Unraveling the Influences of Hemodynamic Lag and Intrinsic Cerebrovascular Reactivity on Functional Metrics in Ischemic Stroke

心脏病学 滞后 血流动力学 冲程(发动机) 缺血性中风 神经科学 内科学 医学 心理学 缺血 计算机科学 物理 热力学 计算机网络
作者
Luoyu Wang,Xiumei Wu,Jinyi Song,Yanhui Fu,Zhenqiang Ma,Xiaoyan Wu,Yiying Wang,Yulin Song,Fenyang Chen,Zhongxiang Ding,Yating Lv
出处
期刊:NeuroImage [Elsevier]
卷期号:303: 120920-120920
标识
DOI:10.1016/j.neuroimage.2024.120920
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI) is a prominent tool for investigating functional deficits in stroke patients. However, the extent to which the hemodynamic lags (LAG) and the intrinsic cerebrovascular reactivity (iCVR) may affect the rs-fMRI metrics in different scales needs to be clarified for ischemic stroke. In this study, 73 ischemic stroke patients and 74 healthy controls (HC) were recruited to investigate how the correction of the LAG and/or iCVR would influence resting-state functional magnetic resonance imaging (rs-fMRI) metrics of three different spatial scales (local-scale, meso-scale and global-scale) in ischemic stroke. The analysis revealed that the Stroke pattern of all functional metrics using different correction strategies resembled the HC pattern. The highest overlap was observed in the Stroke pattern with correction for both LAG and iCVR, while the pattern without correction showed the lowest overlap. Most functional metrics after correction showed higher sensitivity in detecting between-group differences than those without correction. Moreover, our results were generally reproducible in an independent dataset. Collectively, these findings emphasize the necessity of considering LAG and iCVR effects to investigate stroke-related functional alterations, and highlight the significance of correction strategies for accurately interpreting the findings in rs-fMRI study of ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
邬傥完成签到,获得积分10
2秒前
tomato应助执着采纳,获得20
3秒前
大方嵩发布了新的文献求助10
3秒前
梓ccc完成签到,获得积分10
3秒前
3秒前
求助发布了新的文献求助10
4秒前
风雨1210发布了新的文献求助10
4秒前
4秒前
5秒前
小梁要加油完成签到,获得积分20
5秒前
Alpha发布了新的文献求助10
6秒前
刘鹏宇发布了新的文献求助10
7秒前
zhangscience完成签到,获得积分10
7秒前
可爱的函函应助若狂采纳,获得10
8秒前
小蘑菇应助阿美采纳,获得30
8秒前
科研通AI2S应助机智小虾米采纳,获得10
9秒前
充电宝应助Xx.采纳,获得10
10秒前
zhangscience发布了新的文献求助10
11秒前
深情安青应助大方嵩采纳,获得10
12秒前
英俊的铭应助大方嵩采纳,获得10
12秒前
李还好完成签到,获得积分10
13秒前
满意的柏柳完成签到,获得积分10
14秒前
15秒前
16秒前
16秒前
buno应助88采纳,获得10
16秒前
17秒前
三千世界完成签到,获得积分10
17秒前
17秒前
愉快的访旋完成签到,获得积分10
18秒前
Alpha完成签到,获得积分10
19秒前
大大发布了新的文献求助30
19秒前
翠翠发布了新的文献求助10
20秒前
半山发布了新的文献求助10
21秒前
21秒前
天天快乐应助CO2采纳,获得10
21秒前
隐形曼青应助junzilan采纳,获得10
22秒前
Dksido发布了新的文献求助10
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808