Spatial transcriptomic clocks reveal cell proximity effects in brain ageing

老化 转录组 电池类型 神经科学 生物 重编程 细胞 遗传学 基因表达 基因
作者
Eric Sun,Olivia Y. Zhou,Max Hauptschein,Nimrod Rappoport,Lucy Xu,Paloma Navarro Negredo,Ling Liu,Thomas A. Rando,James Zou,Anne Brunet
出处
期刊:Nature [Springer Nature]
标识
DOI:10.1038/s41586-024-08334-8
摘要

Old age is associated with a decline in cognitive function and an increase in neurodegenerative disease risk1. Brain ageing is complex and is accompanied by many cellular changes2. Furthermore, the influence that aged cells have on neighbouring cells and how this contributes to tissue decline is unknown. More generally, the tools to systematically address this question in ageing tissues have not yet been developed. Here we generate a spatially resolved single-cell transcriptomics brain atlas of 4.2 million cells from 20 distinct ages across the adult lifespan and across two rejuvenating interventions—exercise and partial reprogramming. We build spatial ageing clocks, machine learning models trained on this spatial transcriptomics atlas, to identify spatial and cell-type-specific transcriptomic fingerprints of ageing, rejuvenation and disease, including for rare cell types. Using spatial ageing clocks and deep learning, we find that T cells, which increasingly infiltrate the brain with age, have a marked pro-ageing proximity effect on neighbouring cells. Surprisingly, neural stem cells have a strong pro-rejuvenating proximity effect on neighbouring cells. We also identify potential mediators of the pro-ageing effect of T cells and the pro-rejuvenating effect of neural stem cells on their neighbours. These results suggest that rare cell types can have a potent influence on their neighbours and could be targeted to counter tissue ageing. Spatial ageing clocks represent a useful tool for studying cell–cell interactions in spatial contexts and should allow scalable assessment of the efficacy of interventions for ageing and disease. A spatially resolved single-cell transcriptomics map of the mouse brain at different ages reveals signatures of ageing, rejuvenation and disease, including ageing effects associated with T cells and rejuvenation associated with neural stem cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
优秀傲之完成签到,获得积分10
5秒前
232314发布了新的文献求助10
5秒前
day_on发布了新的文献求助10
5秒前
乾清宫喝奶茶完成签到,获得积分10
6秒前
Armstrong完成签到,获得积分10
7秒前
科研通AI2S应助WQY采纳,获得10
8秒前
8秒前
林洁佳完成签到,获得积分10
8秒前
栗子发布了新的文献求助10
9秒前
陈陈完成签到 ,获得积分10
13秒前
飞鱼发布了新的文献求助30
13秒前
不配.应助完美的海秋采纳,获得10
14秒前
14秒前
栗子完成签到,获得积分10
15秒前
18秒前
20秒前
zhouleibio完成签到,获得积分10
21秒前
22秒前
23秒前
刚刚好完成签到 ,获得积分10
23秒前
我是老大应助热闹的冬天采纳,获得10
23秒前
24秒前
lzy完成签到 ,获得积分10
24秒前
25秒前
月儿完成签到,获得积分10
28秒前
烟花应助科研通管家采纳,获得10
28秒前
六六应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得30
28秒前
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
29秒前
30秒前
Dream点壹完成签到,获得积分10
30秒前
31秒前
活泼人生完成签到 ,获得积分10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242411
求助须知:如何正确求助?哪些是违规求助? 2886764
关于积分的说明 8244805
捐赠科研通 2555314
什么是DOI,文献DOI怎么找? 1383399
科研通“疑难数据库(出版商)”最低求助积分说明 649702
邀请新用户注册赠送积分活动 625537