清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Rural Tourist Attractions Recommendation Model Based on Multi-Feature Fusion Graph Neural Networks

计算机科学 旅游 人工神经网络 特征(语言学) 人工智能 图形 乡村旅游 机器学习 数据挖掘 理论计算机科学 语言学 哲学 政治学 旅游地理学 法学
作者
Xiangrong Zhang,Xueying Wang
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
标识
DOI:10.1142/s1469026824500275
摘要

With the rapid growth of the rural tourism industry, traditional tourism recommendation technologies can no longer meet the necessary requirements. To address the issue of rural tourist attraction recommendations, a rural tourist attraction recommendation model is constructed based on a multi-feature fusion graph neural network. First, construct a feature map based on the relationship between tourists’ preferences and tourist attractions, and incorporate the attention mechanism to enhance the model’s learning capabilities. Second, utilize a two-part graph model to extract positive and negative preference features of tourists, and a conversation graph model to extract tourists’ transfer preference features. Finally, various features are utilized to generate suggested content by computing scores for tourists’ travel preferences. To address the problem of recommending tourist groups, suitable features for random group matching are collected and the cosine function is employed to identify users with similar random group features. Finally, the multi-features are merged, and the tourists’ interest preferences are scored to arrive at content recommendations. In the experiment on individualized attraction recommendations, data from the Chengdu area were used to test the proposed model. The accuracy of the model’s recommendations was 0.822 for five recommendations which outperformed the other models. In the experiment for group-based attraction recommendations, this experiment tested the Chengdu dataset. The proposed model achieved the highest accuracy of 0.972 when the group size was 70, outperforming the other two models. Additionally, with regards to different numbers of recommendations, the proposed model’s accuracy was 0.5241, which was the best performance among the three models when the number of recommendations was set to five. The proposed recommendation model performs optimally in suggesting tourist attractions and meets the needs of rural tourism. The research content provides crucial technical references for tourist traveling and rural tourism development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏夏完成签到 ,获得积分10
1秒前
乒坛巨人完成签到 ,获得积分10
4秒前
南风完成签到 ,获得积分10
15秒前
carne完成签到,获得积分10
24秒前
Luna爱科研完成签到 ,获得积分10
36秒前
乐正怡完成签到 ,获得积分0
36秒前
风清扬应助科研通管家采纳,获得10
58秒前
星辰大海应助科研通管家采纳,获得20
58秒前
1分钟前
8R60d8应助wuludie采纳,获得10
1分钟前
xiaoyi完成签到 ,获得积分10
1分钟前
酷波er应助xbx1991采纳,获得10
1分钟前
1分钟前
四月完成签到 ,获得积分10
1分钟前
徐涛完成签到 ,获得积分10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
hover完成签到,获得积分10
1分钟前
重重重飞完成签到 ,获得积分10
2分钟前
王饱饱完成签到 ,获得积分10
2分钟前
朴素亦绿完成签到,获得积分10
2分钟前
柒八染完成签到 ,获得积分10
2分钟前
ybwei2008_163完成签到,获得积分20
2分钟前
陈俊雷完成签到 ,获得积分10
2分钟前
桐桐应助科研通管家采纳,获得20
2分钟前
Casey完成签到 ,获得积分10
3分钟前
3分钟前
SCINEXUS完成签到,获得积分0
3分钟前
迅速的幻雪完成签到 ,获得积分10
3分钟前
陈豆豆完成签到 ,获得积分10
3分钟前
jason完成签到 ,获得积分10
3分钟前
rockyshi完成签到 ,获得积分10
3分钟前
zh完成签到 ,获得积分10
3分钟前
嘉嘉发布了新的文献求助10
3分钟前
缥缈的闭月完成签到,获得积分10
3分钟前
wushang完成签到 ,获得积分10
3分钟前
4分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
充电宝应助Rayoo采纳,获得10
4分钟前
4分钟前
CipherSage应助科研通管家采纳,获得20
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495278
关于积分的说明 11076026
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783291
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839