Rural Tourist Attractions Recommendation Model Based on Multi-Feature Fusion Graph Neural Networks

计算机科学 旅游 人工神经网络 特征(语言学) 人工智能 图形 乡村旅游 机器学习 数据挖掘 理论计算机科学 语言学 哲学 政治学 旅游地理学 法学
作者
Xiangrong Zhang,Xueying Wang
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
被引量:1
标识
DOI:10.1142/s1469026824500275
摘要

With the rapid growth of the rural tourism industry, traditional tourism recommendation technologies can no longer meet the necessary requirements. To address the issue of rural tourist attraction recommendations, a rural tourist attraction recommendation model is constructed based on a multi-feature fusion graph neural network. First, construct a feature map based on the relationship between tourists’ preferences and tourist attractions, and incorporate the attention mechanism to enhance the model’s learning capabilities. Second, utilize a two-part graph model to extract positive and negative preference features of tourists, and a conversation graph model to extract tourists’ transfer preference features. Finally, various features are utilized to generate suggested content by computing scores for tourists’ travel preferences. To address the problem of recommending tourist groups, suitable features for random group matching are collected and the cosine function is employed to identify users with similar random group features. Finally, the multi-features are merged, and the tourists’ interest preferences are scored to arrive at content recommendations. In the experiment on individualized attraction recommendations, data from the Chengdu area were used to test the proposed model. The accuracy of the model’s recommendations was 0.822 for five recommendations which outperformed the other models. In the experiment for group-based attraction recommendations, this experiment tested the Chengdu dataset. The proposed model achieved the highest accuracy of 0.972 when the group size was 70, outperforming the other two models. Additionally, with regards to different numbers of recommendations, the proposed model’s accuracy was 0.5241, which was the best performance among the three models when the number of recommendations was set to five. The proposed recommendation model performs optimally in suggesting tourist attractions and meets the needs of rural tourism. The research content provides crucial technical references for tourist traveling and rural tourism development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嗝嗝发布了新的文献求助10
1秒前
吴鹏飞完成签到,获得积分10
3秒前
CodeCraft应助难过的谷芹采纳,获得10
4秒前
公主不爱说话完成签到,获得积分10
4秒前
NexusExplorer应助lemontree采纳,获得10
5秒前
5秒前
6秒前
飞翔的猫发布了新的文献求助10
6秒前
西瓜完成签到,获得积分10
7秒前
大模型应助嗝嗝采纳,获得10
8秒前
9秒前
董蓓蕾发布了新的文献求助10
9秒前
将月完成签到,获得积分10
10秒前
科研通AI5应助Grant采纳,获得10
11秒前
hoh发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助150
16秒前
17秒前
果果完成签到,获得积分10
18秒前
18秒前
19秒前
22秒前
22秒前
23秒前
a_jumper发布了新的文献求助10
24秒前
学术菜鸡发布了新的文献求助10
24秒前
且彳亍发布了新的文献求助10
24秒前
24秒前
领导范儿应助具足精严采纳,获得10
24秒前
HuiJN完成签到 ,获得积分10
24秒前
24秒前
深情安青应助hoh采纳,获得10
25秒前
26秒前
lovesonic完成签到,获得积分10
27秒前
28秒前
阳光萌萌发布了新的文献求助30
28秒前
小小发布了新的文献求助10
30秒前
31秒前
英姑应助MHY采纳,获得10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082633
求助须知:如何正确求助?哪些是违规求助? 4299977
关于积分的说明 13397686
捐赠科研通 4123912
什么是DOI,文献DOI怎么找? 2258602
邀请新用户注册赠送积分活动 1262850
关于科研通互助平台的介绍 1196866