Rural Tourist Attractions Recommendation Model Based on Multi-Feature Fusion Graph Neural Networks

计算机科学 旅游 人工神经网络 特征(语言学) 人工智能 图形 乡村旅游 机器学习 数据挖掘 理论计算机科学 语言学 哲学 政治学 旅游地理学 法学
作者
Xiangrong Zhang,Xueying Wang
出处
期刊:International Journal of Computational Intelligence and Applications [World Scientific]
被引量:1
标识
DOI:10.1142/s1469026824500275
摘要

With the rapid growth of the rural tourism industry, traditional tourism recommendation technologies can no longer meet the necessary requirements. To address the issue of rural tourist attraction recommendations, a rural tourist attraction recommendation model is constructed based on a multi-feature fusion graph neural network. First, construct a feature map based on the relationship between tourists’ preferences and tourist attractions, and incorporate the attention mechanism to enhance the model’s learning capabilities. Second, utilize a two-part graph model to extract positive and negative preference features of tourists, and a conversation graph model to extract tourists’ transfer preference features. Finally, various features are utilized to generate suggested content by computing scores for tourists’ travel preferences. To address the problem of recommending tourist groups, suitable features for random group matching are collected and the cosine function is employed to identify users with similar random group features. Finally, the multi-features are merged, and the tourists’ interest preferences are scored to arrive at content recommendations. In the experiment on individualized attraction recommendations, data from the Chengdu area were used to test the proposed model. The accuracy of the model’s recommendations was 0.822 for five recommendations which outperformed the other models. In the experiment for group-based attraction recommendations, this experiment tested the Chengdu dataset. The proposed model achieved the highest accuracy of 0.972 when the group size was 70, outperforming the other two models. Additionally, with regards to different numbers of recommendations, the proposed model’s accuracy was 0.5241, which was the best performance among the three models when the number of recommendations was set to five. The proposed recommendation model performs optimally in suggesting tourist attractions and meets the needs of rural tourism. The research content provides crucial technical references for tourist traveling and rural tourism development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2025迷完成签到 ,获得积分10
刚刚
阔达的琦完成签到 ,获得积分10
刚刚
刚刚
sqc完成签到 ,获得积分10
1秒前
可爱的函函应助张祎家采纳,获得20
1秒前
1秒前
俏皮麦片完成签到,获得积分10
1秒前
小蘑菇应助XT采纳,获得10
1秒前
2秒前
2秒前
2秒前
天涯赤子完成签到,获得积分10
2秒前
科研通AI6应助苏休夫采纳,获得10
2秒前
3秒前
Silver完成签到,获得积分10
3秒前
HLS完成签到,获得积分20
3秒前
勤恳凌文发布了新的文献求助10
4秒前
Akim应助xiaoyi采纳,获得10
4秒前
躺平的搬砖人完成签到,获得积分10
4秒前
今后应助保温杯坏了采纳,获得10
4秒前
4秒前
5秒前
阿仔发布了新的文献求助10
5秒前
飞快的羊青完成签到,获得积分10
5秒前
自由朋友发布了新的文献求助10
5秒前
隐形摇伽发布了新的文献求助10
6秒前
在水一方应助chimchim采纳,获得10
6秒前
6秒前
科研小菜完成签到 ,获得积分0
6秒前
袁子晴完成签到 ,获得积分10
7秒前
111完成签到 ,获得积分10
7秒前
科研通AI6应助魏铭哲采纳,获得10
7秒前
8秒前
斯文败类应助Seven采纳,获得10
8秒前
8秒前
打打应助甜蜜的马里奥采纳,获得10
8秒前
8秒前
8秒前
bkagyin应助甜蜜的马里奥采纳,获得10
8秒前
852应助甜蜜的马里奥采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629530
求助须知:如何正确求助?哪些是违规求助? 4720219
关于积分的说明 14969927
捐赠科研通 4787582
什么是DOI,文献DOI怎么找? 2556376
邀请新用户注册赠送积分活动 1517512
关于科研通互助平台的介绍 1478188