Rural Tourist Attractions Recommendation Model Based on Multi-Feature Fusion Graph Neural Networks

计算机科学 旅游 人工神经网络 特征(语言学) 人工智能 图形 乡村旅游 机器学习 数据挖掘 理论计算机科学 语言学 哲学 政治学 旅游地理学 法学
作者
Xiangrong Zhang,Xueying Wang
出处
期刊:International Journal of Computational Intelligence and Applications [World Scientific]
标识
DOI:10.1142/s1469026824500275
摘要

With the rapid growth of the rural tourism industry, traditional tourism recommendation technologies can no longer meet the necessary requirements. To address the issue of rural tourist attraction recommendations, a rural tourist attraction recommendation model is constructed based on a multi-feature fusion graph neural network. First, construct a feature map based on the relationship between tourists’ preferences and tourist attractions, and incorporate the attention mechanism to enhance the model’s learning capabilities. Second, utilize a two-part graph model to extract positive and negative preference features of tourists, and a conversation graph model to extract tourists’ transfer preference features. Finally, various features are utilized to generate suggested content by computing scores for tourists’ travel preferences. To address the problem of recommending tourist groups, suitable features for random group matching are collected and the cosine function is employed to identify users with similar random group features. Finally, the multi-features are merged, and the tourists’ interest preferences are scored to arrive at content recommendations. In the experiment on individualized attraction recommendations, data from the Chengdu area were used to test the proposed model. The accuracy of the model’s recommendations was 0.822 for five recommendations which outperformed the other models. In the experiment for group-based attraction recommendations, this experiment tested the Chengdu dataset. The proposed model achieved the highest accuracy of 0.972 when the group size was 70, outperforming the other two models. Additionally, with regards to different numbers of recommendations, the proposed model’s accuracy was 0.5241, which was the best performance among the three models when the number of recommendations was set to five. The proposed recommendation model performs optimally in suggesting tourist attractions and meets the needs of rural tourism. The research content provides crucial technical references for tourist traveling and rural tourism development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
psq0061完成签到,获得积分10
刚刚
1秒前
2秒前
爆炸米花完成签到,获得积分10
3秒前
3秒前
星星的梦完成签到,获得积分10
3秒前
昌升发布了新的文献求助10
3秒前
3秒前
碎月发布了新的文献求助10
4秒前
MYW完成签到,获得积分10
5秒前
najibveto应助成就的雪莲采纳,获得10
5秒前
qdzxy发布了新的文献求助10
5秒前
5秒前
充电宝应助显隐采纳,获得10
6秒前
8秒前
8秒前
8秒前
所所应助77采纳,获得10
9秒前
科研通AI2S应助花海采纳,获得10
10秒前
小蘑菇应助风趣冰棍采纳,获得10
11秒前
11秒前
12秒前
13秒前
优秀送终完成签到,获得积分10
14秒前
14秒前
YJ888发布了新的文献求助10
14秒前
Eli完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
JamesPei应助huyang采纳,获得10
16秒前
852应助柚子采纳,获得10
17秒前
天天快乐应助任性的一斩采纳,获得10
17秒前
sdsd发布了新的文献求助10
18秒前
Eli发布了新的文献求助10
18秒前
Orange应助大树爱树懒采纳,获得10
19秒前
Hik完成签到,获得积分10
20秒前
王世缘完成签到,获得积分10
21秒前
万康发布了新的文献求助30
21秒前
77发布了新的文献求助10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247424
求助须知:如何正确求助?哪些是违规求助? 2890727
关于积分的说明 8264436
捐赠科研通 2559108
什么是DOI,文献DOI怎么找? 1387751
科研通“疑难数据库(出版商)”最低求助积分说明 650648
邀请新用户注册赠送积分活动 627355