Machine Learning and Deep Learning for Diagnosis of Lumbar Spinal Stenosis: Systematic Review and Meta-Analysis

荟萃分析 医学 腰椎管狭窄症 系统回顾 科克伦图书馆 机器学习 人工智能 梅德林 物理疗法 腰椎 内科学 外科 计算机科学 政治学 法学
作者
Tianyi Wang,R.H. Chen,Ning Fan,Lei Zang,Shuo Yuan,Peng Du,Qichao Wu,Aobo Wang,Jian Li,Xiaochuan Kong,Wenyi Zhu
出处
期刊:Journal of Medical Internet Research 卷期号:26: e54676-e54676
标识
DOI:10.2196/54676
摘要

Background Lumbar spinal stenosis (LSS) is a major cause of pain and disability in older individuals worldwide. Although increasing studies of traditional machine learning (TML) and deep learning (DL) were conducted in the field of diagnosing LSS and gained prominent results, the performance of these models has not been analyzed systematically. Objective This systematic review and meta-analysis aimed to pool the results and evaluate the heterogeneity of the current studies in using TML or DL models to diagnose LSS, thereby providing more comprehensive information for further clinical application. Methods This review was performed under the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines using articles extracted from PubMed, Embase databases, and Cochrane Library databases. Studies that evaluated DL or TML algorithms assessment value on diagnosing LSS were included, while those with duplicated or unavailable data were excluded. Quality Assessment of Diagnostic Accuracy Studies 2 was used to estimate the risk of bias in each study. The MIDAS module and the METAPROP module of Stata (StataCorp) were used for data synthesis and statistical analyses. Results A total of 12 studies with 15,044 patients reported the assessment value of TML or DL models for diagnosing LSS. The risk of bias assessment yielded 4 studies with high risk of bias, 3 with unclear risk of bias, and 5 with completely low risk of bias. The pooled sensitivity and specificity were 0.84 (95% CI: 0.82-0.86; I2=99.06%) and 0.87 (95% CI 0.84-0.90; I2=98.7%), respectively. The diagnostic odds ratio was 36 (95% CI 26-49), the positive likelihood ratio (LR+) was 6.6 (95% CI 5.1-8.4), and the negative likelihood ratio (LR–) was 0.18 (95% CI 0.16-0.21). The summary receiver operating characteristic curves, the area under the curve of TML or DL models for diagnosing LSS of 0.92 (95% CI 0.89-0.94), indicating a high diagnostic value. Conclusions This systematic review and meta-analysis emphasize that despite the generally satisfactory diagnostic performance of artificial intelligence systems in the experimental stage for the diagnosis of LSS, none of them is reliable and practical enough to apply in real clinical practice. Further efforts, including optimization of model balance, widely accepted objective reference standards, multimodal strategy, large dataset for training and testing, external validation, and sufficient and scientific report, should be made to bridge the distance between current TML or DL models and real-life clinical applications in future studies. Trial Registration PROSPERO CRD42024566535; https://tinyurl.com/msx59x8k
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lala发布了新的文献求助100
1秒前
三匹发布了新的文献求助10
1秒前
JamesPei应助痴情的雁易采纳,获得10
1秒前
木木发布了新的文献求助10
1秒前
执着的笑南完成签到,获得积分20
1秒前
tttdssgff发布了新的文献求助10
2秒前
2秒前
科目三应助ccc采纳,获得30
3秒前
sydzlt完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
same发布了新的文献求助10
6秒前
GedeWang完成签到,获得积分10
6秒前
6秒前
superspace发布了新的文献求助10
6秒前
善学以致用应助冬虫夏草采纳,获得30
7秒前
汉堡包应助zipa采纳,获得10
7秒前
7秒前
梦里发布了新的文献求助10
8秒前
summ发布了新的文献求助10
8秒前
耶椰耶完成签到 ,获得积分10
8秒前
8秒前
tttdssgff完成签到,获得积分10
8秒前
单薄松鼠完成签到 ,获得积分10
9秒前
9秒前
你好明天完成签到,获得积分20
10秒前
10秒前
上官若男应助三匹采纳,获得10
10秒前
sci完成签到 ,获得积分10
11秒前
Alone发布了新的文献求助10
11秒前
我我我发布了新的文献求助10
12秒前
星星发布了新的文献求助10
12秒前
12秒前
cach完成签到,获得积分10
13秒前
我是快乐的小行家完成签到,获得积分10
13秒前
Jasper应助夏陌采纳,获得10
13秒前
丰富的含巧完成签到,获得积分10
13秒前
13秒前
大马猴发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540203
求助须知:如何正确求助?哪些是违规求助? 3117698
关于积分的说明 9332009
捐赠科研通 2815417
什么是DOI,文献DOI怎么找? 1547572
邀请新用户注册赠送积分活动 721047
科研通“疑难数据库(出版商)”最低求助积分说明 712419