Domain Progressive Low-dose CT Imaging using Iterative Partial Diffusion Model

迭代重建 迭代法 医学影像学 扩散 计算机科学 核医学 算法 计算机视觉 人工智能 医学 物理 热力学
作者
Feiyang Liao,Yufei Tang,Qiang Du,Jiping Wang,Ming Li,Jian Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3492260
摘要

Traditional deep learning reconstruction (DLR) methods have been sparsely applied in practical low-dose computed tomography (LDCT) imaging, as they heavily rely on the similarity between the latent distributions of data features. However, in real LDCT imaging scenarios, the distribution of data features is highly diverse and complex, which limits the generalizability of existing DLR methods. Recently, diffusion models have shown great potential in the field of LDCT imaging, and some early studies have used them to address the domain generalization problem. However, they still face challenges such as high time consumption, difficulties in training with high resolution, and performance degradation in denoising scenario. In this paper, we propose a novel domain progressive LDCT imaging framework with an iterative partial diffusion model (IPDM) as the core. Firstly, the derived IPDM theoretical framework supports completing the denoising task by iterating a small part of the complete diffusion model, utilizing the strong generation ability of the diffusion model while alleviating time consumption and convergence difficulties. Secondly, a derived condition guided sampling method alleviates sampling bias caused by deviations of the predictive data gradient and Langevin dynamics. Finally, an adaptive weight strategy based on pixel-wise noise estimation can gradually adjust guided intensity. Extensive testing on diverse datasets reveals that our method outperforms traditional iterative reconstructions, unsupervised, and some supervised DLR methods in visual and quantitative evaluations, closely matching the performance of state-of-the-art supervised DLR techniques. Additionally, our IPDM was trained using practical normal-dose CT data, rather than the tested LDCT data. This enables our method to have better generalization ability compared to traditional DLR methods in practical imaging scenarios. Source code is available at https://github.com/LFY1998/IPDM-PyTorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助lin采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Someone应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
qin希望应助深入肺腑采纳,获得10
3秒前
3秒前
3秒前
3秒前
Biao完成签到,获得积分10
4秒前
21GolDiamond完成签到,获得积分10
5秒前
小马哥完成签到,获得积分20
5秒前
7秒前
含糊的问寒完成签到,获得积分10
7秒前
8秒前
海潮发布了新的文献求助10
8秒前
李健应助神雕侠采纳,获得10
8秒前
8秒前
10秒前
彭于晏应助波酱采纳,获得10
12秒前
haowu发布了新的文献求助10
12秒前
lin发布了新的文献求助10
15秒前
16秒前
山阴路没有夏天完成签到,获得积分10
18秒前
极品小亮发布了新的文献求助10
18秒前
19秒前
yiyilinlin完成签到,获得积分10
19秒前
Fan完成签到,获得积分10
20秒前
20秒前
21秒前
笑点低的白莲完成签到,获得积分10
21秒前
22秒前
鲤鱼初柳发布了新的文献求助10
23秒前
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157455
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878686
捐赠科研通 2467233
什么是DOI,文献DOI怎么找? 1313279
科研通“疑难数据库(出版商)”最低求助积分说明 630380
版权声明 601919