Domain Progressive Low-dose CT Imaging using Iterative Partial Diffusion Model

迭代重建 迭代法 医学影像学 扩散 计算机科学 核医学 算法 计算机视觉 人工智能 医学 物理 热力学
作者
Feiyang Liao,Yufei Tang,Qiang Du,Jiping Wang,Ming Li,Jian Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3492260
摘要

Traditional deep learning reconstruction (DLR) methods have been sparsely applied in practical low-dose computed tomography (LDCT) imaging, as they heavily rely on the similarity between the latent distributions of data features. However, in real LDCT imaging scenarios, the distribution of data features is highly diverse and complex, which limits the generalizability of existing DLR methods. Recently, diffusion models have shown great potential in the field of LDCT imaging, and some early studies have used them to address the domain generalization problem. However, they still face challenges such as high time consumption, difficulties in training with high resolution, and performance degradation in denoising scenario. In this paper, we propose a novel domain progressive LDCT imaging framework with an iterative partial diffusion model (IPDM) as the core. Firstly, the derived IPDM theoretical framework supports completing the denoising task by iterating a small part of the complete diffusion model, utilizing the strong generation ability of the diffusion model while alleviating time consumption and convergence difficulties. Secondly, a derived condition guided sampling method alleviates sampling bias caused by deviations of the predictive data gradient and Langevin dynamics. Finally, an adaptive weight strategy based on pixel-wise noise estimation can gradually adjust guided intensity. Extensive testing on diverse datasets reveals that our method outperforms traditional iterative reconstructions, unsupervised, and some supervised DLR methods in visual and quantitative evaluations, closely matching the performance of state-of-the-art supervised DLR techniques. Additionally, our IPDM was trained using practical normal-dose CT data, rather than the tested LDCT data. This enables our method to have better generalization ability compared to traditional DLR methods in practical imaging scenarios. Source code is available at https://github.com/LFY1998/IPDM-PyTorch.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽乐菱应助Green采纳,获得30
1秒前
yy发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
酷酷的冰真应助6260采纳,获得30
3秒前
Chen发布了新的文献求助10
3秒前
yu777完成签到,获得积分10
3秒前
4秒前
奚斌完成签到,获得积分10
5秒前
泡泡糖与一世安完成签到,获得积分10
5秒前
魔芋完成签到,获得积分10
5秒前
安详的三颜完成签到 ,获得积分10
5秒前
JX发布了新的文献求助10
7秒前
7秒前
华仔应助li采纳,获得10
8秒前
李健应助忆枫采纳,获得10
8秒前
Z2WWS32发布了新的文献求助10
8秒前
赵成龙发布了新的文献求助10
9秒前
10秒前
简单发布了新的文献求助10
11秒前
doctorZY完成签到,获得积分10
12秒前
情怀应助宿亮东采纳,获得10
12秒前
万能图书馆应助宿亮东采纳,获得10
12秒前
科研通AI2S应助猴猴采纳,获得10
12秒前
李爱国应助dild采纳,获得10
13秒前
13秒前
电致阿光完成签到,获得积分10
13秒前
怕黑的静蕾应助梦比优斯采纳,获得10
14秒前
李健的小迷弟应助Ti采纳,获得10
14秒前
15秒前
烟花应助yy采纳,获得10
15秒前
无花果应助灵巧阑香采纳,获得10
15秒前
gao完成签到,获得积分10
16秒前
pwq发布了新的文献求助10
18秒前
wanci应助干净怀寒采纳,获得30
18秒前
JX完成签到,获得积分10
19秒前
19秒前
leec应助sopha采纳,获得20
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421