A Novel Frequency-Division Deep Learning Approach for Magnetotelluric Data Quality Enhancement

计算机科学 降噪 人工智能 噪音(视频) 频域 时频分析 模式识别(心理学) 信号(编程语言) 深度学习 信号处理 算法 电信 计算机视觉 雷达 图像(数学) 程序设计语言
作者
Nian Yu,Mingjie Ji,Chao Zhang,Yi Ye,Wei Zhou
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-86
标识
DOI:10.1190/geo2024-0451.1
摘要

High signal-to-noise ratio magnetotelluric (MT) data are crucial for accurately interpreting subsurface structures. Recently, deep learning has become popular for MT denoising due to its ability to avoid parameter tuning and enable real-time processing. These methods typically fit or predict signals in noisy segments after identifying and segmenting signal and noise in the time domain. However, these methods struggle to preserve both low- and high-frequency signals effectively due to high noise levels in these segments. To address this issue, we propose a novel deep learning denoising method that separately recovers low- and high-frequency signals using distinct strategies. Low-frequency signals are fitted using an inverse autoencoder with a channel attention mechanism, effectively removing high-frequency components. High-frequency signals are then predicted using a bidirectional long short-term memory network (BiLSTM) combined with a squeeze-and-excitation (SE) mechanism, enhancing prediction by considering both global and local signal characteristics. Additionally, we introduce the multivariate state estimation technique (MSET) for real-time signal-noise identification. MSET analyzes residuals after separating low-frequency signals to identify noise. Denoising is performed only on segments with significant noise, preserving more effective signals. Finally, the fitted low-frequency dominant component and predicted high-frequency component are combined to form the denoised MT signals. This combined approach significantly improves the restoration quality of effective signals compared to existing methods. Experimental results demonstrate that our method exhibits superior denoising capabilities in both quantitative and qualitative evaluations, including apparent resistivity-phase curves and polarization direction analysis, offering enhanced performance over current deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
牛姐完成签到,获得积分10
1秒前
李小喵完成签到,获得积分10
1秒前
1秒前
曾珍完成签到 ,获得积分10
2秒前
wshwx完成签到,获得积分10
2秒前
阳光以南完成签到,获得积分10
2秒前
Ridley发布了新的文献求助10
2秒前
Leety完成签到,获得积分10
2秒前
2秒前
高手中的糕手完成签到,获得积分10
3秒前
王花花发布了新的文献求助10
3秒前
yuu发布了新的文献求助20
4秒前
ztt发布了新的文献求助10
4秒前
4秒前
樱子发布了新的文献求助10
4秒前
旺仔完成签到 ,获得积分10
4秒前
ffw1完成签到,获得积分10
4秒前
4秒前
5秒前
Superg发布了新的文献求助10
6秒前
LDDD发布了新的文献求助10
6秒前
酷波er应助阳光以南采纳,获得10
6秒前
小酥饼完成签到,获得积分10
7秒前
唐水之发布了新的文献求助10
7秒前
善良身影完成签到,获得积分10
8秒前
不回首发布了新的文献求助10
8秒前
9秒前
浮雨微清完成签到,获得积分10
9秒前
水煮牛肉完成签到,获得积分10
10秒前
asdasd完成签到 ,获得积分10
10秒前
所所应助Elec采纳,获得10
10秒前
10秒前
zhangyujin完成签到,获得积分10
10秒前
冷水发布了新的文献求助10
10秒前
11秒前
烟花应助eric采纳,获得30
11秒前
12秒前
顾矜应助光亮灯泡采纳,获得10
12秒前
伟川周完成签到 ,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904