已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Frequency-Division Deep Learning Approach for Magnetotelluric Data Quality Enhancement

计算机科学 降噪 人工智能 噪音(视频) 频域 时频分析 模式识别(心理学) 信号(编程语言) 深度学习 信号处理 算法 电信 计算机视觉 雷达 图像(数学) 程序设计语言
作者
Nian Yu,Mingjie Ji,Chao Zhang,Yi Ye,Wei Zhou
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-86
标识
DOI:10.1190/geo2024-0451.1
摘要

High signal-to-noise ratio magnetotelluric (MT) data are crucial for accurately interpreting subsurface structures. Recently, deep learning has become popular for MT denoising due to its ability to avoid parameter tuning and enable real-time processing. These methods typically fit or predict signals in noisy segments after identifying and segmenting signal and noise in the time domain. However, these methods struggle to preserve both low- and high-frequency signals effectively due to high noise levels in these segments. To address this issue, we propose a novel deep learning denoising method that separately recovers low- and high-frequency signals using distinct strategies. Low-frequency signals are fitted using an inverse autoencoder with a channel attention mechanism, effectively removing high-frequency components. High-frequency signals are then predicted using a bidirectional long short-term memory network (BiLSTM) combined with a squeeze-and-excitation (SE) mechanism, enhancing prediction by considering both global and local signal characteristics. Additionally, we introduce the multivariate state estimation technique (MSET) for real-time signal-noise identification. MSET analyzes residuals after separating low-frequency signals to identify noise. Denoising is performed only on segments with significant noise, preserving more effective signals. Finally, the fitted low-frequency dominant component and predicted high-frequency component are combined to form the denoised MT signals. This combined approach significantly improves the restoration quality of effective signals compared to existing methods. Experimental results demonstrate that our method exhibits superior denoising capabilities in both quantitative and qualitative evaluations, including apparent resistivity-phase curves and polarization direction analysis, offering enhanced performance over current deep learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻雅绿完成签到,获得积分10
1秒前
阿巴阿巴发布了新的文献求助10
1秒前
狂野果汁发布了新的文献求助10
3秒前
4秒前
烂漫幻翠发布了新的文献求助10
7秒前
BlueMag1c发布了新的文献求助30
8秒前
xwc关闭了xwc文献求助
9秒前
楠茸完成签到 ,获得积分10
10秒前
情怀应助Infinity采纳,获得10
10秒前
whereas完成签到 ,获得积分10
10秒前
爆米花应助狂野果汁采纳,获得10
13秒前
小烦完成签到 ,获得积分10
15秒前
haha完成签到 ,获得积分10
23秒前
25秒前
科研小南完成签到 ,获得积分10
26秒前
26秒前
29秒前
aaaaaab应助高大短靴采纳,获得10
30秒前
38秒前
YC发布了新的文献求助10
39秒前
41秒前
wu发布了新的文献求助10
43秒前
oydent完成签到,获得积分10
46秒前
47秒前
50秒前
繁荣的发带关注了科研通微信公众号
50秒前
糟糕的铁锤应助科研通管家采纳,获得100
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
51秒前
FashionBoy应助安卉采纳,获得10
52秒前
阿巴阿巴完成签到,获得积分20
53秒前
所所应助月下独酌leon采纳,获得10
54秒前
lulu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助鱼摆摆摆摆采纳,获得10
1分钟前
京墨完成签到,获得积分10
1分钟前
1分钟前
七柱香发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3274970
求助须知:如何正确求助?哪些是违规求助? 2914025
关于积分的说明 8370983
捐赠科研通 2584673
什么是DOI,文献DOI怎么找? 1407227
科研通“疑难数据库(出版商)”最低求助积分说明 656845
邀请新用户注册赠送积分活动 637293