已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Frequency-Division Deep Learning Approach for Magnetotelluric Data Quality Enhancement

计算机科学 降噪 人工智能 噪音(视频) 频域 时频分析 模式识别(心理学) 信号(编程语言) 深度学习 信号处理 算法 电信 计算机视觉 图像(数学) 程序设计语言 雷达
作者
Nian Yu,Mingjie Ji,Chao Zhang,Yi Ye,Wei Zhou
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:: 1-86 被引量:1
标识
DOI:10.1190/geo2024-0451.1
摘要

High signal-to-noise ratio magnetotelluric (MT) data are crucial for accurately interpreting subsurface structures. Recently, deep learning has become popular for MT denoising due to its ability to avoid parameter tuning and enable real-time processing. These methods typically fit or predict signals in noisy segments after identifying and segmenting signal and noise in the time domain. However, these methods struggle to preserve both low- and high-frequency signals effectively due to high noise levels in these segments. To address this issue, we propose a novel deep learning denoising method that separately recovers low- and high-frequency signals using distinct strategies. Low-frequency signals are fitted using an inverse autoencoder with a channel attention mechanism, effectively removing high-frequency components. High-frequency signals are then predicted using a bidirectional long short-term memory network (BiLSTM) combined with a squeeze-and-excitation (SE) mechanism, enhancing prediction by considering both global and local signal characteristics. Additionally, we introduce the multivariate state estimation technique (MSET) for real-time signal-noise identification. MSET analyzes residuals after separating low-frequency signals to identify noise. Denoising is performed only on segments with significant noise, preserving more effective signals. Finally, the fitted low-frequency dominant component and predicted high-frequency component are combined to form the denoised MT signals. This combined approach significantly improves the restoration quality of effective signals compared to existing methods. Experimental results demonstrate that our method exhibits superior denoising capabilities in both quantitative and qualitative evaluations, including apparent resistivity-phase curves and polarization direction analysis, offering enhanced performance over current deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燚槿完成签到 ,获得积分10
1秒前
田様应助笨笨桐采纳,获得10
1秒前
1秒前
2秒前
ding应助lingyan采纳,获得10
4秒前
自信萃完成签到 ,获得积分10
4秒前
林凯菲完成签到,获得积分10
5秒前
5秒前
尹沐完成签到 ,获得积分10
7秒前
乐乐应助卷卷采纳,获得30
7秒前
7秒前
9秒前
映泧完成签到,获得积分10
9秒前
qing发布了新的文献求助10
9秒前
prrrratt发布了新的文献求助10
10秒前
刺五加完成签到 ,获得积分10
11秒前
Delight完成签到 ,获得积分0
12秒前
12秒前
零四零零柒贰完成签到 ,获得积分10
13秒前
王七七发布了新的文献求助10
13秒前
13秒前
624发布了新的文献求助30
13秒前
科研通AI6应助猫猫猫采纳,获得10
14秒前
14秒前
16秒前
无语伦比完成签到 ,获得积分10
16秒前
17秒前
candy完成签到 ,获得积分10
17秒前
哈哈哈发布了新的文献求助10
17秒前
18秒前
ceeray23发布了新的文献求助20
18秒前
陈博儿发布了新的文献求助30
18秒前
香蕉觅云应助于鱼采纳,获得10
19秒前
21秒前
所所应助大方雁露采纳,获得10
22秒前
何劲松发布了新的文献求助10
23秒前
郝誉发布了新的文献求助10
24秒前
左西完成签到 ,获得积分10
26秒前
何劲松完成签到,获得积分10
30秒前
慕青应助于鱼采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571