Electrolyte Solvent‐Ion Configuration Deciphering Lithium Plating/Stripping Chemistry for High‐Performance Lithium Metal Battery

金属锂 电解质 材料科学 锂(药物) 电镀(地质) 电池(电) 剥离(纤维) 锂离子电池 金属 溶剂 离子 无机化学 化学工程 冶金 有机化学 化学 电极 复合材料 物理化学 热力学 医学 功率(物理) 物理 地球物理学 地质学 工程类 内分泌学
作者
Qian Li,Gang Liu,Yinghua Chen,Jia Wang,Pushpendra Kumar,Hongliang Xie,Wandi Wahyudi,Hao Yu,Zexu Wang,Zheng Ma,Jun Ming
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202420327
摘要

Abstract Electrolyte engineering plays a critical role in tuning lithium plating/stripping behaviors, thereby enabling safer operation of lithium metal anodes in lithium metal batteries (LMBs). However, understanding how electrolyte microstructures influence the lithium plating/stripping process at the molecular level remains a significant challenge. Herein, using a commonly employed ether‐based electrolyte as a model, the role of each electrolyte component is elucidated and a relationship between electrolyte behavior and the lithium plating/stripping process is established by investigating the effects of electrolyte compositions, including solvents, salts, and additives. The variations in Li + deposition kinetics are not only analyzed by characterizing the lithium deposition overpotential and exchange current density but it is also identified that the intermolecular interactions are the previously unexplored cause of these variations by 2D nuclear overhauser effect spectroscopy (NOESY). An interfacial model is developed to explain how solvent interactions, distinct roles of anions, and critical effects of additives influence Li + desolvation kinetics and the thermodynamic stability of desolvation clusters during lithium plating/stripping process. This model clarifies how these configurations of solvents and ions are related to the macroscopic properties of lithium plating/stripping chemistry. These findings contribute to more uniform and controllable lithium deposition, providing valuable insights for designing advanced electrolyte systems for LMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biozj发布了新的文献求助30
刚刚
1秒前
1秒前
1秒前
2秒前
李爱国应助呆萌的心情采纳,获得10
3秒前
星辰大海应助SIKI采纳,获得10
4秒前
4秒前
透视眼完成签到 ,获得积分10
4秒前
爱静静应助yututu采纳,获得10
5秒前
Lyyyw发布了新的文献求助10
5秒前
孙远欣发布了新的文献求助10
5秒前
6秒前
科研通AI5应助黑暗系采纳,获得30
6秒前
6秒前
yiyi发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
Hello应助安慧容采纳,获得10
9秒前
研友_VZG7GZ应助山山采纳,获得10
9秒前
frankly120发布了新的文献求助10
11秒前
11秒前
小谢发布了新的文献求助10
11秒前
念之深澜发布了新的文献求助10
11秒前
11秒前
周一发布了新的文献求助10
11秒前
12秒前
小马甲应助李思言采纳,获得30
12秒前
琴酒发布了新的文献求助10
12秒前
科研通AI5应助黑暗系采纳,获得10
13秒前
科研通AI5应助ffz采纳,获得10
14秒前
惊蛰应助坦率白萱采纳,获得10
14秒前
yyy发布了新的文献求助30
14秒前
Potia发布了新的文献求助10
15秒前
16秒前
科研通AI5应助米米采纳,获得10
17秒前
17秒前
serendipity发布了新的文献求助10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544030
求助须知:如何正确求助?哪些是违规求助? 3121232
关于积分的说明 9346245
捐赠科研通 2819283
什么是DOI,文献DOI怎么找? 1550155
邀请新用户注册赠送积分活动 722389
科研通“疑难数据库(出版商)”最低求助积分说明 713191