MHAF-YOLO: Multi-Branch Heterogeneous Auxiliary Fusion YOLO for accurate object detection

融合 人工智能 计算机视觉 计算机科学 对象(语法) 目标检测 传感器融合 模式识别(心理学) 哲学 语言学
作者
Zhiqiang Yang,Qiu Guan,Zhongwen Yu,Xinli Xu,Haixia Long,Sheng Lian,Haigen Hu,Ying Tang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.04656
摘要

Due to the effective multi-scale feature fusion capabilities of the Path Aggregation FPN (PAFPN), it has become a widely adopted component in YOLO-based detectors. However, PAFPN struggles to integrate high-level semantic cues with low-level spatial details, limiting its performance in real-world applications, especially with significant scale variations. In this paper, we propose MHAF-YOLO, a novel detection framework featuring a versatile neck design called the Multi-Branch Auxiliary FPN (MAFPN), which consists of two key modules: the Superficial Assisted Fusion (SAF) and Advanced Assisted Fusion (AAF). The SAF bridges the backbone and the neck by fusing shallow features, effectively transferring crucial low-level spatial information with high fidelity. Meanwhile, the AAF integrates multi-scale feature information at deeper neck layers, delivering richer gradient information to the output layer and further enhancing the model learning capacity. To complement MAFPN, we introduce the Global Heterogeneous Flexible Kernel Selection (GHFKS) mechanism and the Reparameterized Heterogeneous Multi-Scale (RepHMS) module to enhance feature fusion. RepHMS is globally integrated into the network, utilizing GHFKS to select larger convolutional kernels for various feature layers, expanding the vertical receptive field and capturing contextual information across spatial hierarchies. Locally, it optimizes convolution by processing both large and small kernels within the same layer, broadening the lateral receptive field and preserving crucial details for detecting smaller targets. The source code of this work is available at: https://github.com/yang0201/MHAF-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
舍弃完成签到,获得积分20
2秒前
搞怪诗桃完成签到,获得积分10
3秒前
4秒前
马马发布了新的文献求助10
5秒前
ttjj应助jiang采纳,获得10
5秒前
8秒前
9秒前
虚心的飞鸟完成签到 ,获得积分10
9秒前
寄AAA完成签到,获得积分20
10秒前
野风车完成签到,获得积分10
11秒前
YUMI发布了新的文献求助10
11秒前
华仔应助大力世界采纳,获得10
12秒前
13秒前
爆米花应助寄AAA采纳,获得10
13秒前
14秒前
cappuccino完成签到 ,获得积分10
15秒前
小明发布了新的文献求助20
15秒前
情怀应助小曾采纳,获得10
15秒前
狂野的夏寒完成签到,获得积分20
17秒前
18秒前
文艺的竺发布了新的文献求助20
18秒前
zxm完成签到,获得积分10
18秒前
马马完成签到,获得积分10
18秒前
桐桐应助moon采纳,获得10
19秒前
SciGPT应助机智妙之采纳,获得30
19秒前
无奈凉面完成签到,获得积分10
20秒前
英俊的铭应助文艺的冬卉采纳,获得10
20秒前
kabane完成签到,获得积分10
20秒前
Lee完成签到,获得积分10
22秒前
三叔完成签到 ,获得积分10
22秒前
xinl518完成签到,获得积分10
22秒前
小蚂蚁完成签到 ,获得积分10
23秒前
CodeCraft应助stick采纳,获得10
23秒前
23秒前
梨炒栗子完成签到,获得积分10
24秒前
25秒前
26秒前
大大大飞机完成签到,获得积分10
26秒前
yoyo20012623完成签到,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350303
求助须知:如何正确求助?哪些是违规求助? 4483745
关于积分的说明 13956970
捐赠科研通 4383013
什么是DOI,文献DOI怎么找? 2408103
邀请新用户注册赠送积分活动 1400754
关于科研通互助平台的介绍 1374194