MHAF-YOLO: Multi-Branch Heterogeneous Auxiliary Fusion YOLO for accurate object detection

融合 人工智能 计算机视觉 计算机科学 对象(语法) 目标检测 传感器融合 模式识别(心理学) 语言学 哲学
作者
Zhiqiang Yang,Qiu Guan,Zhongwen Yu,Xinli Xu,Haixia Long,Sheng Lian,Haigen Hu,Ying Tang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.04656
摘要

Due to the effective multi-scale feature fusion capabilities of the Path Aggregation FPN (PAFPN), it has become a widely adopted component in YOLO-based detectors. However, PAFPN struggles to integrate high-level semantic cues with low-level spatial details, limiting its performance in real-world applications, especially with significant scale variations. In this paper, we propose MHAF-YOLO, a novel detection framework featuring a versatile neck design called the Multi-Branch Auxiliary FPN (MAFPN), which consists of two key modules: the Superficial Assisted Fusion (SAF) and Advanced Assisted Fusion (AAF). The SAF bridges the backbone and the neck by fusing shallow features, effectively transferring crucial low-level spatial information with high fidelity. Meanwhile, the AAF integrates multi-scale feature information at deeper neck layers, delivering richer gradient information to the output layer and further enhancing the model learning capacity. To complement MAFPN, we introduce the Global Heterogeneous Flexible Kernel Selection (GHFKS) mechanism and the Reparameterized Heterogeneous Multi-Scale (RepHMS) module to enhance feature fusion. RepHMS is globally integrated into the network, utilizing GHFKS to select larger convolutional kernels for various feature layers, expanding the vertical receptive field and capturing contextual information across spatial hierarchies. Locally, it optimizes convolution by processing both large and small kernels within the same layer, broadening the lateral receptive field and preserving crucial details for detecting smaller targets. The source code of this work is available at: https://github.com/yang0201/MHAF-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张豪杰发布了新的文献求助10
刚刚
gangstashit发布了新的文献求助30
刚刚
qise发布了新的文献求助10
1秒前
1秒前
良辰完成签到,获得积分10
2秒前
2秒前
h31318927发布了新的文献求助10
3秒前
孙丫丫丫丫丫完成签到,获得积分20
3秒前
4秒前
4秒前
优雅的小白完成签到,获得积分10
5秒前
wanci应助gangstashit采纳,获得10
6秒前
Ava应助minggalaxy007采纳,获得10
6秒前
小张发布了新的文献求助10
6秒前
taozi完成签到,获得积分0
7秒前
7秒前
bai发布了新的文献求助100
7秒前
8秒前
8秒前
8秒前
shine发布了新的文献求助10
8秒前
kk发布了新的文献求助10
9秒前
itsdatou完成签到,获得积分10
10秒前
10秒前
小马甲应助Maryam采纳,获得10
10秒前
11秒前
11秒前
11秒前
云淡风轻发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
democienceek发布了新的文献求助10
12秒前
13秒前
文静千凡发布了新的文献求助10
13秒前
Joy发布了新的文献求助10
14秒前
粒粒发布了新的文献求助150
14秒前
1111发布了新的文献求助10
15秒前
粒粒发布了新的文献求助10
16秒前
粒粒发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316