MHAF-YOLO: Multi-Branch Heterogeneous Auxiliary Fusion YOLO for accurate object detection

融合 人工智能 计算机视觉 计算机科学 对象(语法) 目标检测 传感器融合 模式识别(心理学) 语言学 哲学
作者
Zhiqiang Yang,Qiu Guan,Zhongwen Yu,Xinli Xu,Haixia Long,Sheng Lian,Haigen Hu,Ying Tang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.04656
摘要

Due to the effective multi-scale feature fusion capabilities of the Path Aggregation FPN (PAFPN), it has become a widely adopted component in YOLO-based detectors. However, PAFPN struggles to integrate high-level semantic cues with low-level spatial details, limiting its performance in real-world applications, especially with significant scale variations. In this paper, we propose MHAF-YOLO, a novel detection framework featuring a versatile neck design called the Multi-Branch Auxiliary FPN (MAFPN), which consists of two key modules: the Superficial Assisted Fusion (SAF) and Advanced Assisted Fusion (AAF). The SAF bridges the backbone and the neck by fusing shallow features, effectively transferring crucial low-level spatial information with high fidelity. Meanwhile, the AAF integrates multi-scale feature information at deeper neck layers, delivering richer gradient information to the output layer and further enhancing the model learning capacity. To complement MAFPN, we introduce the Global Heterogeneous Flexible Kernel Selection (GHFKS) mechanism and the Reparameterized Heterogeneous Multi-Scale (RepHMS) module to enhance feature fusion. RepHMS is globally integrated into the network, utilizing GHFKS to select larger convolutional kernels for various feature layers, expanding the vertical receptive field and capturing contextual information across spatial hierarchies. Locally, it optimizes convolution by processing both large and small kernels within the same layer, broadening the lateral receptive field and preserving crucial details for detecting smaller targets. The source code of this work is available at: https://github.com/yang0201/MHAF-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
jjj应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
刚刚
李健应助科研通管家采纳,获得10
刚刚
Cu完成签到,获得积分10
2秒前
淡然的落雁完成签到,获得积分20
3秒前
所所应助小小超采纳,获得10
3秒前
郭宇完成签到 ,获得积分10
3秒前
4秒前
5秒前
李某人完成签到,获得积分10
5秒前
wink发布了新的文献求助10
5秒前
完美世界应助研友_GZ3EbL采纳,获得30
5秒前
扎心应助A1234567采纳,获得10
6秒前
8秒前
Master发布了新的文献求助500
8秒前
天天快乐应助fffffffq采纳,获得10
8秒前
htt应助benben采纳,获得10
9秒前
连安阳完成签到,获得积分10
9秒前
虞紫山完成签到,获得积分10
10秒前
wwww完成签到 ,获得积分10
10秒前
书生完成签到,获得积分10
10秒前
11秒前
13秒前
直率的宛海完成签到,获得积分10
14秒前
Hello应助julia采纳,获得10
14秒前
JL发布了新的文献求助10
16秒前
大模型应助黄腾采纳,获得10
17秒前
顺心的卿发布了新的文献求助10
19秒前
mx应助黑衣人的秘密采纳,获得30
22秒前
Master完成签到,获得积分10
23秒前
受伤的豌豆完成签到,获得积分10
24秒前
24秒前
25秒前
26秒前
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962670
求助须知:如何正确求助?哪些是违规求助? 3508680
关于积分的说明 11142146
捐赠科研通 3241403
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872935
科研通“疑难数据库(出版商)”最低求助积分说明 803517