MHAF-YOLO: Multi-Branch Heterogeneous Auxiliary Fusion YOLO for accurate object detection

融合 人工智能 计算机视觉 计算机科学 对象(语法) 目标检测 传感器融合 模式识别(心理学) 哲学 语言学
作者
Zhiqiang Yang,Qiu Guan,Zhongwen Yu,Xinli Xu,Haixia Long,Sheng Lian,Haigen Hu,Ying Tang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.04656
摘要

Due to the effective multi-scale feature fusion capabilities of the Path Aggregation FPN (PAFPN), it has become a widely adopted component in YOLO-based detectors. However, PAFPN struggles to integrate high-level semantic cues with low-level spatial details, limiting its performance in real-world applications, especially with significant scale variations. In this paper, we propose MHAF-YOLO, a novel detection framework featuring a versatile neck design called the Multi-Branch Auxiliary FPN (MAFPN), which consists of two key modules: the Superficial Assisted Fusion (SAF) and Advanced Assisted Fusion (AAF). The SAF bridges the backbone and the neck by fusing shallow features, effectively transferring crucial low-level spatial information with high fidelity. Meanwhile, the AAF integrates multi-scale feature information at deeper neck layers, delivering richer gradient information to the output layer and further enhancing the model learning capacity. To complement MAFPN, we introduce the Global Heterogeneous Flexible Kernel Selection (GHFKS) mechanism and the Reparameterized Heterogeneous Multi-Scale (RepHMS) module to enhance feature fusion. RepHMS is globally integrated into the network, utilizing GHFKS to select larger convolutional kernels for various feature layers, expanding the vertical receptive field and capturing contextual information across spatial hierarchies. Locally, it optimizes convolution by processing both large and small kernels within the same layer, broadening the lateral receptive field and preserving crucial details for detecting smaller targets. The source code of this work is available at: https://github.com/yang0201/MHAF-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海完成签到 ,获得积分10
刚刚
小鱼儿发布了新的文献求助10
刚刚
light派完成签到,获得积分10
刚刚
科研通AI6应助潘潘采纳,获得10
刚刚
科研通AI6应助潘潘采纳,获得10
1秒前
青陆完成签到,获得积分10
1秒前
youxin发布了新的文献求助10
1秒前
研究生end应助朔风采纳,获得100
1秒前
河河完成签到,获得积分10
1秒前
lyy完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
高扬完成签到,获得积分10
2秒前
王博发布了新的文献求助10
3秒前
华仔应助好好读书采纳,获得10
3秒前
4秒前
4秒前
5秒前
5秒前
xx完成签到,获得积分10
5秒前
南山完成签到,获得积分10
5秒前
7秒前
neme关注了科研通微信公众号
7秒前
7秒前
7秒前
8秒前
郝靖儿发布了新的文献求助10
8秒前
浮游应助繁星采纳,获得10
9秒前
9秒前
9秒前
小万完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
12秒前
香蕉八宝粥完成签到,获得积分10
12秒前
12秒前
Alora发布了新的文献求助20
13秒前
小刘同学发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330541
求助须知:如何正确求助?哪些是违规求助? 4470056
关于积分的说明 13911717
捐赠科研通 4363303
什么是DOI,文献DOI怎么找? 2396813
邀请新用户注册赠送积分活动 1390275
关于科研通互助平台的介绍 1361006