医学
人工智能
迭代重建
图像质量
深度学习
腹部计算机断层扫描
软件
计算机视觉
算法
噪音(视频)
放射科
图像(数学)
医学物理学
计算机科学
程序设计语言
作者
Achille Mileto,Lifeng Yu,Jonathan W. Revels,Serageldin Kamel,Mostafa Shehata,Juan J. Ibarra-Rovira,Vincenzo K. Wong,Alicia M. Roman-Colon,Jeong Min Lee,Khaled M. Elsayes,Corey T. Jensen
出处
期刊:Radiographics
[Radiological Society of North America]
日期:2024-11-29
卷期号:44 (12)
摘要
Deep learning reconstruction CT algorithms can reduce image noise associated with lower radiation doses while preserving image texture and diagnostic performance, often overcoming the limitations of filtered backprojection and iterative reconstruction methods, and future DLR software developments combined with new CT hardware technologies such as photon-counting CT promise dramatically improved image quality.
科研通智能强力驱动
Strongly Powered by AbleSci AI