CL-GNN: Contrastive Learning and Graph Neural Network for Protein–Ligand Binding Affinity Prediction

计算机科学 化学 图形 人工智能 人工神经网络 计算生物学 生物 理论计算机科学
作者
Yunjiang Zhang,Chenyu Huang,Yaxin Wang,Shuyuan Li,Shaorui Sun
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01290
摘要

In the realm of drug discovery and design, the accurate prediction of protein–ligand binding affinity is of paramount importance as it underpins the functional interactions within biological systems. This study introduces a novel self-supervised learning (SSL) framework that combines contrastive learning and graph neural networks (CL-GNN) for predicting protein–ligand binding affinities, which is a critical aspect of drug discovery. Traditional methods for affinity prediction are expensive and time-consuming, prompting the development of more efficient computational approaches. CL-GNN utilizes a contrastive learning strategy, a form of SSL, to learn from a large data set of 371 458 unique unlabeled protein–ligand complexes. By employing graph neural networks and molecular graph enhancement techniques, the model effectively captures protein–ligand interactions in a self-supervised manner. The fine-tuned model demonstrates competitive performance, achieving high Pearson's correlation coefficients and low root-mean-square errors on benchmark data sets. The proposed method outperforms existing machine learning models, showcasing its potential for accelerating the drug development process. The method effectively quantifies the similarity between protein–ligand complex representations learned in the pretraining and downstream testing phases through cosine similarity assessment. This approach not only revealed potential connections between complexes in their binding properties but also provided new insights into the understanding of drug mechanisms of action. In addition, the transparency of the model is significantly improved by visualizing the importance of key protein residues and ligand atoms. This visualization tool provides insight into the model's predictive decision-making process, providing key biological insights for drug design and optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Adi完成签到,获得积分10
刚刚
LS完成签到,获得积分10
刚刚
刚刚
巧乐兹完成签到,获得积分10
刚刚
花花发布了新的文献求助10
刚刚
wanci应助小兵采纳,获得30
刚刚
4149完成签到,获得积分10
1秒前
无辜渊思完成签到,获得积分10
1秒前
ohh完成签到,获得积分10
3秒前
记忆发布了新的文献求助10
3秒前
zyq发布了新的文献求助10
3秒前
Kkk发布了新的文献求助10
3秒前
3秒前
巧乐兹发布了新的文献求助10
4秒前
李大刚完成签到 ,获得积分10
4秒前
4秒前
5秒前
可爱凡波完成签到,获得积分10
5秒前
5秒前
5秒前
深情安青应助宝宝采纳,获得10
5秒前
鲜艳的手链完成签到,获得积分10
5秒前
李健的粉丝团团长应助ZCX采纳,获得10
7秒前
7秒前
SciGPT应助cherrychou采纳,获得10
8秒前
8秒前
科研通AI2S应助rex采纳,获得10
8秒前
8秒前
迷路的芝麻完成签到 ,获得积分10
8秒前
刘老哥6完成签到,获得积分10
8秒前
9秒前
9秒前
bkagyin应助wodetaiyangLLL采纳,获得10
9秒前
9秒前
执着的怜寒应助Boo采纳,获得10
9秒前
随心完成签到,获得积分10
10秒前
cheng发布了新的文献求助30
10秒前
109902RQ发布了新的文献求助10
10秒前
英姑应助lyl采纳,获得10
10秒前
11秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408846
求助须知:如何正确求助?哪些是违规求助? 3012784
关于积分的说明 8855969
捐赠科研通 2700132
什么是DOI,文献DOI怎么找? 1480218
科研通“疑难数据库(出版商)”最低求助积分说明 684251
邀请新用户注册赠送积分活动 678578