Predictive utility of artificial intelligence on schizophrenia treatment outcomes: A systematic review and meta-analysis

精神分裂症(面向对象编程) 荟萃分析 心理学 认知心理学 精神科 医学 内科学
作者
Reza Saboori Amleshi,Mehran Ilaghi,Masoud Rezaei,Moein Zangiabadian,Hossein Rezazadeh,Gregers Wegener,Shokouh Arjmand
出处
期刊:Neuroscience & Biobehavioral Reviews [Elsevier BV]
卷期号:169: 105968-105968
标识
DOI:10.1016/j.neubiorev.2024.105968
摘要

Identifying optimal treatment approaches for schizophrenia is challenging due to varying symptomatology and treatment responses. Artificial intelligence (AI) shows promise in predicting outcomes, prompting this systematic review and meta-analysis to evaluate various AI models' predictive utilities in schizophrenia treatment. A systematic search was conducted, and the risk of bias was evaluated. The pooled sensitivity, specificity, and diagnostic odds ratio with 95 % confidence intervals between AI models and the reference standard for response to treatment were assessed. Diagnostic accuracy measures were calculated, and subgroup analysis was performed based on the input data of AI models. Out of the 21 included studies, AI models achieved a pooled sensitivity of 70 % and specificity of 76 % in predicting schizophrenia treatment response with substantial predictive capacity and a near-to-high level of test accuracy. Subgroup analysis revealed EEG-based models to have the highest sensitivity (89 %) and specificity (94 %), followed by imaging-based models (76 % and 80 %, respectively). However, significant heterogeneity was observed across studies in treatment response definitions, participant characteristics, and therapeutic interventions. Despite methodological variations and small sample sizes in some modalities, this study underscores AI's predictive utility in schizophrenia treatment, offering insights for tailored approaches, improving adherence, and reducing relapse risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄文博发布了新的文献求助10
1秒前
月亮完成签到,获得积分20
1秒前
感谢包容的花卷转发科研通微信,获得积分50
2秒前
2秒前
3秒前
zhaiwk完成签到,获得积分10
4秒前
感谢小小转发科研通微信,获得积分50
4秒前
科研通AI5应助知性的尔曼采纳,获得10
5秒前
5秒前
鲨鱼鲨鱼鲨鱼完成签到,获得积分10
5秒前
6秒前
皓月星辰完成签到,获得积分10
6秒前
子车茗应助111采纳,获得10
6秒前
香蕉觅云应助汪三十采纳,获得10
6秒前
6秒前
月亮发布了新的文献求助10
7秒前
ailuming发布了新的文献求助10
7秒前
感谢缥缈的魔镜转发科研通微信,获得积分50
7秒前
7秒前
lily发布了新的文献求助10
7秒前
8秒前
112完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
小明同学发布了新的文献求助10
11秒前
Micheal发布了新的文献求助10
11秒前
11秒前
11秒前
感谢HouYv转发科研通微信,获得积分50
12秒前
简单灵凡发布了新的文献求助10
13秒前
出门见喜发布了新的文献求助10
13秒前
感谢张茜转发科研通微信,获得积分50
15秒前
芒果与鱼完成签到,获得积分10
16秒前
不再褪色发布了新的文献求助10
16秒前
purplemoon发布了新的文献求助10
16秒前
高高可乐发布了新的文献求助20
16秒前
17秒前
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814