纳米颗粒
纳米技术
磁性纳米粒子
DNA
材料科学
化学
生物化学
作者
Jein Ko,Jong-Wook Kim,Kanghyun Ki,Seung‐Hyun Moon,Hyunjin Jeon,Jin Hyeok Park,Murali Golla,C. Chun,Jong Sik Kim,AM Lee,Hyoungsoo Kim,Sarah S. Park,Tae Soup Shim,So‐Jung Park
出处
期刊:Nano Letters
[American Chemical Society]
日期:2024-12-16
标识
DOI:10.1021/acs.nanolett.4c05189
摘要
The shape-dependent aero- and hydro-dynamics found in nature have been adopted in a wide range of areas spanning from daily transportation to forefront biomedical research. Here, we report DNA-linked nanoparticle films exhibiting shape-dependent magnetic locomotion, controlled by DNA sequences. Fabricated through a DNA-directed layer-by-layer assembly of iron oxide and gold nanoparticles, the multifunctional films exhibit rotational and translational motions under magnetic fields, along with reversible shape morphing via DNA strand exchange reactions. Notably, the shape of the film significantly influences its magnetic responsiveness, attributable to shape-dependent drag forces acting on mesoscopic films. The distinctive shape dependence combined with the shape-changing capability offers an approach to regulate magnetic locomotion within a constant magnetic field, as demonstrated here through the go and stop motion of nanoparticle films without altering the magnetic field.
科研通智能强力驱动
Strongly Powered by AbleSci AI