High Enantiomeric Purity Carboxylic Acid Synthesis via Synergistic Electrocatalytic Oxidation Using Mn‐NiSe2 and Aminoxyl Radicals

电催化剂 电化学 外消旋化 对映体 组合化学 材料科学 催化作用 化学工程 电极 化学 有机化学 物理化学 工程类
作者
Jiahui He,Suiqin Li,Kai Li,Lihao Liu,Yuhang Wang,Linhan Ren,Ying Chen,Jie‐Yu Wang,Yongyong Cao,Xing Zhong,Jianguo Wang
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202405358
摘要

Abstract Chiral drugs play an indispensable role in pharmaceutical and healthcare fields. However, large‐scale synthesis is hindered by challenges such as low reaction rates, racemization, and difficulties in scaling up. In this study, an effective synergistic electrocatalytic strategy involving a 3D Mn‐NiSe 2 /GF electrocatalyst and aminoxyl is proposed and demonstrated for the multi‐hundred‐gram scale synthesis of the chiral drug intermediate Levetiracetam. The mild reaction conditions of electrocatalysis effectively preserves the stereochemical configuration adjacent to the oxidation site, achieving yields of up to 93.5% and enantiomeric excess retention of 99.1% through process intensification in a continuous flow electrolyzer. Surface reconstruction of the Mn‐NiSe 2 /GF and potential catalytic mechanisms are validated through a series of electrochemical and in situ characterizations. Additionally, theoretical calculations elucidate the critical role of Mn doping in the adsorption of intermediates. The electrode area is expanded from 10 to 1200 cm 2 in the modular stacked electrolyzer, with ee retention remaining above 97.6% across varying reaction scales from 7.8 to 250 g further validating the robustness and scalability of the process. This work offers an effective approach for preparing efficient electrocatalytic materials and synthesizing chiral pharmaceutical intermediates, providing valuable insights for the design and application of modular industrial‐scale electrolyzers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruxing发布了新的文献求助10
1秒前
在水一方应助Li采纳,获得10
2秒前
科研CY完成签到,获得积分10
2秒前
司徒迎曼发布了新的文献求助10
2秒前
无花果应助su采纳,获得10
2秒前
简隋英完成签到,获得积分20
2秒前
深情安青应助曾友采纳,获得10
2秒前
稳重的灵安完成签到,获得积分10
2秒前
3秒前
grzzz完成签到,获得积分10
3秒前
xyz发布了新的文献求助10
3秒前
公西元柏发布了新的文献求助10
3秒前
4秒前
4秒前
wary发布了新的文献求助10
4秒前
5秒前
简隋英发布了新的文献求助30
5秒前
niu完成签到,获得积分10
5秒前
Qing灿完成签到,获得积分10
5秒前
粒子一号完成签到,获得积分10
6秒前
FY完成签到,获得积分10
6秒前
Aurora完成签到,获得积分10
6秒前
7秒前
7秒前
柔弱凡松完成签到,获得积分10
8秒前
BB完成签到,获得积分10
8秒前
Lin发布了新的文献求助10
8秒前
8秒前
内向音响完成签到,获得积分20
9秒前
科研小白完成签到,获得积分10
9秒前
刘芸芸完成签到,获得积分10
9秒前
伍贰肆完成签到,获得积分10
10秒前
phil发布了新的文献求助10
10秒前
福娃发布了新的文献求助10
10秒前
10秒前
xyz完成签到,获得积分10
11秒前
MJQ完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762