材料科学
阻带
光电子学
微波食品加热
钙钛矿(结构)
光电探测器
吸收(声学)
电信
计算机科学
谐振器
化学工程
工程类
复合材料
作者
Jun Yan,Qi Zheng,Shuangpeng Wang,Yongzhi Tian,Weiqiang Gong,Feng Gao,Jijun Qiu,Lin Li,Shuhui Yang,Mao‐Sheng Cao
标识
DOI:10.1002/adma.202300015
摘要
High-efficiency electromagnetic (EM) functional materials are the core building block of high-performance EM absorbers and devices, and they are indispensable in various fields ranging from industrial manufacture to daily life, or even from national defense security to space exploration. Searching for high-efficiency EM functional materials and realizing high-performance EM devices remain great challenges. Herein, a simple solution-process is developed to rapidly grow gram-scale organic-inorganic (MAPbX3 , X = Cl, Br, I) perovskite microcrystals. They exhibit excellent EM response in multi bands covering microwaves, visible light, and X-rays. Among them, outstanding microwave absorption performance with multiple absorption bands can be achieved, and their intrinsic EM properties can be tuned by adjusting polar group. An ultra-wideband bandpass filter with high suppression level of -71.8 dB in the stopband in the GHz band, self-powered photodetectors with tunable broadband or narrowband photoresponse in the visible-light band, and a self-powered X-ray detector with high sensitivity of 3560 µC Gyair-1 cm-2 in the X-ray band are designed and realized by precisely regulating the physical features of perovskite and designing a novel planar device structure. These findings open a door toward developing high-efficiency EM functional materials for realizing high-performance EM absorbers and devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI