Liquid Biopsy-Based Volatile Organic Compounds from Blood and Urine and Their Combined Data Sets for Highly Accurate Detection of Cancer

癌症 尿 色谱法 质谱法 液体活检 化学 癌症检测 挥发性有机化合物 医学 内科学 生物化学 有机化学
作者
Reef Einoch Amor,Jeremy Levy,Yoav Y. Broza,Reinis Vangravs,Shelley Rapoport,Min Zhang,Weiwei Wu,Mārcis Leja,Joachim A. Behar,Hossam Haick
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (4): 1450-1461 被引量:11
标识
DOI:10.1021/acssensors.2c02422
摘要

Liquid biopsy is seen as a prospective tool for cancer screening and tracking. However, the difficulty lies in effectively sieving, isolating, and overseeing cancer biomarkers from the backdrop of multiple disrupting cells and substances. The current study reports on the ability to perform liquid biopsy without the need to physically filter and/or isolate the cancer cells per se. This has been achieved through the detection and classification of volatile organic compounds (VOCs) emitted from the cancer cells found in the headspace of blood or urine samples or a combined data set of both. Spectrometric analysis shows that blood and urine contain complementary or overlapping VOC information on kidney cancer, gastric cancer, lung cancer, and fibrogastroscopy subjects. Based on this information, a nanomaterial-based chemical sensor array in conjugation with machine learning as well as data fusion of the signals achieved was carried out on various body fluids to assess the VOC profiles of cancer. The detection of VOC patterns by either Gas Chromatography−Mass Spectrometry (GC−MS) analysis or our sensor array achieved >90% accuracy, >80% sensitivity, and >80% specificity in different binary classification tasks. The hybrid approach, namely, analyzing the VOC datasets of blood and urine together, contributes an additional discrimination ability to the improvement (>3%) of the model's accuracy. The contribution of the hybrid approach for an additional discrimination ability to the improvement of the model's accuracy is examined and reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助充电宝z采纳,获得10
1秒前
3秒前
zzhui完成签到 ,获得积分10
3秒前
俭朴梦菡完成签到,获得积分10
4秒前
思源应助星星采纳,获得10
5秒前
5秒前
5秒前
飞哥发布了新的文献求助10
9秒前
cencen完成签到 ,获得积分10
11秒前
13秒前
20秒前
20秒前
zero1832发布了新的文献求助10
20秒前
充电宝z完成签到,获得积分10
22秒前
平常平松发布了新的文献求助10
26秒前
26秒前
29秒前
芝芝椰奶冻完成签到 ,获得积分10
33秒前
Dsunflower完成签到 ,获得积分10
33秒前
自觉的向日葵完成签到,获得积分10
34秒前
树叶有专攻完成签到,获得积分10
37秒前
37秒前
郑雨霏完成签到,获得积分10
38秒前
茉莉园完成签到,获得积分10
40秒前
ProfCTS发布了新的文献求助10
40秒前
一只大憨憨猫完成签到,获得积分10
41秒前
旧旧发布了新的文献求助10
42秒前
CTS完成签到,获得积分10
46秒前
46秒前
科目三应助一一采纳,获得10
50秒前
鱼鱼鱼发布了新的文献求助10
51秒前
彩色夜阑完成签到,获得积分10
52秒前
飞哥完成签到 ,获得积分10
54秒前
59秒前
不秃头完成签到,获得积分10
1分钟前
1分钟前
meng发布了新的文献求助10
1分钟前
赘婿应助样子采纳,获得10
1分钟前
勤劳泽洋发布了新的文献求助20
1分钟前
彭于晏应助Rita采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775525
求助须知:如何正确求助?哪些是违规求助? 3321190
关于积分的说明 10203825
捐赠科研通 3036017
什么是DOI,文献DOI怎么找? 1665907
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766