已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Scene Augmentation Methods for Interactive Embodied AI Tasks

计算机科学 具身认知 人工智能 内含代理 对象(语法) 机器人 一般化 过度拟合 机器学习 场景图 人机交互 人工神经网络 渲染(计算机图形) 数学分析 数学
作者
Hongrui Sang,Rong Jiang,Zhipeng Wang,Yanmin Zhou,Ping Lu,Bin He
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:1
标识
DOI:10.1109/tim.2023.3259033
摘要

The emerging embodied AI paradigm enables intelligent robots to learn like humans from interaction, and is thus considered an effective way approach to general artificial intelligence. Unfortunately, even the best performing agents still overfit and generalize poorly to unseen scenes, due to the limited scenes provided by embodied AI simulators. To alleviate this issue, we propose a scene augmentation strategy to scale up the scene diversity for interactive tasks and make the interactions more like the real world. Compared to existing methods focusing on improving diversity in observation space, our approach aims to automatically derive a new distribution of scene layout or object states to provide sufficient conditional transfer models for the agent to learn environmental invariant and irrelevant features through interaction. Specifically, we provide four representative and systematical scene augmentation methods that can derive scene variants for entities from different levels of a scene graph. We demonstrate the efficiency of our methods in the popular embodied AI simulator iGibson. To verify the effectiveness for interactive agents, we also conduct two representative interactive tasks with a proposed continuous action parameterized method. The evaluation results show that our scene augmentation strategy can boost the performance of interactive agents and generalize well to unseen scenes. Finally, we present a systematic generalization analysis using the proposed methods to explicitly estimate the ability of agents to generalize to new layouts, new objects, and new object states. We claim that the proposed methods are not limited to iGibson and can be extended to other interactive simulators. The code and additional information are available at: https://github.com/sanghongrui/SceneAug.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的冰夏完成签到 ,获得积分10
1秒前
顾矜应助han采纳,获得10
4秒前
ttt完成签到,获得积分20
5秒前
6秒前
Sharon发布了新的文献求助10
6秒前
BBC发布了新的文献求助20
8秒前
12秒前
Jasper应助白临渊采纳,获得10
13秒前
Sharon完成签到,获得积分10
13秒前
顾矜应助科研通管家采纳,获得20
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
爱静静应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得30
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
彭于晏应助andrele采纳,获得50
16秒前
17秒前
18秒前
20秒前
天真的白凡完成签到 ,获得积分10
23秒前
suuummmer发布了新的文献求助10
24秒前
大模型应助BBC采纳,获得10
25秒前
yang发布了新的文献求助10
26秒前
27秒前
小D驳回了iNk应助
31秒前
希望天下0贩的0应助zzz采纳,获得30
32秒前
32秒前
yang完成签到,获得积分10
36秒前
Hello应助酷炫的若剑采纳,获得10
36秒前
LH完成签到,获得积分10
37秒前
zero发布了新的文献求助30
37秒前
iorpi完成签到,获得积分10
38秒前
丰知然应助wintersss采纳,获得10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310871
求助须知:如何正确求助?哪些是违规求助? 2943675
关于积分的说明 8516080
捐赠科研通 2619029
什么是DOI,文献DOI怎么找? 1431797
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649751