亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scene Augmentation Methods for Interactive Embodied AI Tasks

计算机科学 具身认知 人工智能 内含代理 对象(语法) 机器人 一般化 过度拟合 机器学习 场景图 人机交互 人工神经网络 渲染(计算机图形) 数学 数学分析
作者
Hongrui Sang,Rong Jiang,Zhipeng Wang,Yanmin Zhou,Ping Lu,Bin He
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:1
标识
DOI:10.1109/tim.2023.3259033
摘要

The emerging embodied AI paradigm enables intelligent robots to learn like humans from interaction, and is thus considered an effective way approach to general artificial intelligence. Unfortunately, even the best performing agents still overfit and generalize poorly to unseen scenes, due to the limited scenes provided by embodied AI simulators. To alleviate this issue, we propose a scene augmentation strategy to scale up the scene diversity for interactive tasks and make the interactions more like the real world. Compared to existing methods focusing on improving diversity in observation space, our approach aims to automatically derive a new distribution of scene layout or object states to provide sufficient conditional transfer models for the agent to learn environmental invariant and irrelevant features through interaction. Specifically, we provide four representative and systematical scene augmentation methods that can derive scene variants for entities from different levels of a scene graph. We demonstrate the efficiency of our methods in the popular embodied AI simulator iGibson. To verify the effectiveness for interactive agents, we also conduct two representative interactive tasks with a proposed continuous action parameterized method. The evaluation results show that our scene augmentation strategy can boost the performance of interactive agents and generalize well to unseen scenes. Finally, we present a systematic generalization analysis using the proposed methods to explicitly estimate the ability of agents to generalize to new layouts, new objects, and new object states. We claim that the proposed methods are not limited to iGibson and can be extended to other interactive simulators. The code and additional information are available at: https://github.com/sanghongrui/SceneAug.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
量子星尘发布了新的文献求助10
20秒前
DYXX完成签到,获得积分10
29秒前
Rondab应助ab采纳,获得10
29秒前
39秒前
49秒前
快乐滑板发布了新的文献求助30
52秒前
Lucas应助夜洛乌泽采纳,获得30
53秒前
CodeCraft应助前前前世采纳,获得10
1分钟前
Foxjker完成签到 ,获得积分10
1分钟前
1分钟前
ab完成签到,获得积分10
1分钟前
Nash完成签到 ,获得积分10
1分钟前
1分钟前
航biubiu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
El完成签到,获得积分10
2分钟前
2分钟前
黙宇循光完成签到 ,获得积分10
2分钟前
2分钟前
El发布了新的文献求助10
2分钟前
Eve发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
Eve完成签到,获得积分10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
3分钟前
前前前世发布了新的文献求助10
3分钟前
ii应助anagenesis采纳,获得50
3分钟前
3分钟前
量子星尘发布了新的文献求助30
3分钟前
3分钟前
3分钟前
LXY发布了新的文献求助10
3分钟前
无情的君浩完成签到,获得积分10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503050
关于积分的说明 11111168
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870728
科研通“疑难数据库(出版商)”最低求助积分说明 802250