亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Harnessing omics data for drug discovery and development in ovarian aging

药物发现 组学 计算生物学 药品 生物 生物信息学 药物开发 医学 数据科学 计算机科学 药理学
作者
Fengyu Zhang,Ming Zhu,Yi Chen,Guiquan Wang,Haiyan Yang,Xinmei Lu,Yan Li,Hsun‐Ming Chang,Yang Wu,Yunlong Ma,Shuai Yuan,Wencheng Zhu,Xi Dong,Yue Zhao,Yang Yu,Jia Wang,Liangshan Mu
出处
期刊:Human Reproduction Update [Oxford University Press]
标识
DOI:10.1093/humupd/dmaf002
摘要

Ovarian aging occurs earlier than the aging of many other organs and has a lasting impact on women's overall health and well-being. However, effective interventions to slow ovarian aging remain limited, primarily due to an incomplete understanding of the underlying molecular mechanisms and drug targets. Recent advances in omics data resources, combined with innovative computational tools, are offering deeper insight into the molecular complexities of ovarian aging, paving the way for new opportunities in drug discovery and development. This review aims to synthesize the expanding multi-omics data, spanning genome, transcriptome, proteome, metabolome, and microbiome, related to ovarian aging, from both tissue-level and single-cell perspectives. We will specially explore how the analysis of these emerging omics datasets can be leveraged to identify novel drug targets and guide therapeutic strategies for slowing and reversing ovarian aging. We conducted a comprehensive literature search in the PubMed database using a range of relevant keywords: ovarian aging, age at natural menopause, premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), genomics, transcriptomics, epigenomics, DNA methylation, RNA modification, histone modification, proteomics, metabolomics, lipidomics, microbiome, single-cell, genome-wide association studies (GWAS), whole-exome sequencing, phenome-wide association studies (PheWAS), Mendelian randomization (MR), epigenetic target, drug target, machine learning, artificial intelligence (AI), deep learning, and multi-omics. The search was restricted to English-language articles published up to September 2024. Multi-omics studies have uncovered key mechanisms driving ovarian aging, including DNA damage and repair deficiencies, inflammatory and immune responses, mitochondrial dysfunction, and cell death. By integrating multi-omics data, researchers can identify critical regulatory factors and mechanisms across various biological levels, leading to the discovery of potential drug targets. Notable examples include genetic targets such as BRCA2 and TERT, epigenetic targets like Tet and FTO, metabolic targets such as sirtuins and CD38+, protein targets like BIN2 and PDGF-BB, and transcription factors such as FOXP1. The advent of cutting-edge omics technologies, especially single-cell technologies and spatial transcriptomics, has provided valuable insights for guiding treatment decisions and has become a powerful tool in drug discovery aimed at mitigating or reversing ovarian aging. As technology advances, the integration of single-cell multi-omics data with AI models holds the potential to more accurately predict candidate drug targets. This convergence offers promising new avenues for personalized medicine and precision therapies, paving the way for tailored interventions in ovarian aging. Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
bomi发布了新的文献求助10
9秒前
suxuan完成签到,获得积分20
17秒前
lll完成签到,获得积分10
22秒前
科研通AI2S应助lll采纳,获得10
27秒前
35秒前
42秒前
脸小呆呆完成签到 ,获得积分10
42秒前
Paopaoxuan应助懦弱的元风采纳,获得10
59秒前
传奇3应助十三采纳,获得10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
1分钟前
1分钟前
十三发布了新的文献求助10
1分钟前
2分钟前
2分钟前
机智浩发布了新的文献求助10
2分钟前
简因完成签到 ,获得积分10
2分钟前
善学以致用应助机智浩采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
5分钟前
kbcbwb2002完成签到,获得积分10
5分钟前
科研通AI40应助温梓辰采纳,获得10
6分钟前
6分钟前
7分钟前
温梓辰发布了新的文献求助10
7分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
温梓辰完成签到 ,获得积分10
7分钟前
7分钟前
牛八先生完成签到,获得积分10
7分钟前
7分钟前
chiazy完成签到 ,获得积分10
7分钟前
科研菜鸟发布了新的文献求助10
7分钟前
打打应助懵懂的怜南采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471456
求助须知:如何正确求助?哪些是违规求助? 3064517
关于积分的说明 9088273
捐赠科研通 2755148
什么是DOI,文献DOI怎么找? 1511834
邀请新用户注册赠送积分活动 698589
科研通“疑难数据库(出版商)”最低求助积分说明 698473