清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Harnessing omics data for drug discovery and development in ovarian aging

表观遗传学 组学 现象 代谢组 代谢组学 表观基因组 蛋白质组学 计算生物学 转录组 生物 基因组学 表观遗传学 生物信息学 DNA甲基化 基因组 遗传学 基因表达 基因
作者
Fengyu Zhang,Ming Zhu,Yi Chen,Guiquan Wang,Haiyan Yang,Xinmei Lu,Yan Li,Hsun‐Ming Chang,Yang Wu,Yunlong Ma,Shuai Yuan,Wencheng Zhu,Xi Dong,Yue Zhao,Yang Yu,Jia Wang,Liangshan Mu
出处
期刊:Human Reproduction Update [Oxford University Press]
标识
DOI:10.1093/humupd/dmaf002
摘要

Ovarian aging occurs earlier than the aging of many other organs and has a lasting impact on women's overall health and well-being. However, effective interventions to slow ovarian aging remain limited, primarily due to an incomplete understanding of the underlying molecular mechanisms and drug targets. Recent advances in omics data resources, combined with innovative computational tools, are offering deeper insight into the molecular complexities of ovarian aging, paving the way for new opportunities in drug discovery and development. This review aims to synthesize the expanding multi-omics data, spanning genome, transcriptome, proteome, metabolome, and microbiome, related to ovarian aging, from both tissue-level and single-cell perspectives. We will specially explore how the analysis of these emerging omics datasets can be leveraged to identify novel drug targets and guide therapeutic strategies for slowing and reversing ovarian aging. We conducted a comprehensive literature search in the PubMed database using a range of relevant keywords: ovarian aging, age at natural menopause, premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), genomics, transcriptomics, epigenomics, DNA methylation, RNA modification, histone modification, proteomics, metabolomics, lipidomics, microbiome, single-cell, genome-wide association studies (GWAS), whole-exome sequencing, phenome-wide association studies (PheWAS), Mendelian randomization (MR), epigenetic target, drug target, machine learning, artificial intelligence (AI), deep learning, and multi-omics. The search was restricted to English-language articles published up to September 2024. Multi-omics studies have uncovered key mechanisms driving ovarian aging, including DNA damage and repair deficiencies, inflammatory and immune responses, mitochondrial dysfunction, and cell death. By integrating multi-omics data, researchers can identify critical regulatory factors and mechanisms across various biological levels, leading to the discovery of potential drug targets. Notable examples include genetic targets such as BRCA2 and TERT, epigenetic targets like Tet and FTO, metabolic targets such as sirtuins and CD38+, protein targets like BIN2 and PDGF-BB, and transcription factors such as FOXP1. The advent of cutting-edge omics technologies, especially single-cell technologies and spatial transcriptomics, has provided valuable insights for guiding treatment decisions and has become a powerful tool in drug discovery aimed at mitigating or reversing ovarian aging. As technology advances, the integration of single-cell multi-omics data with AI models holds the potential to more accurately predict candidate drug targets. This convergence offers promising new avenues for personalized medicine and precision therapies, paving the way for tailored interventions in ovarian aging. Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bookgg完成签到 ,获得积分10
7秒前
机灵哲瀚完成签到,获得积分10
14秒前
袁钰琳完成签到 ,获得积分10
14秒前
17秒前
www发布了新的文献求助10
21秒前
阿尔法贝塔完成签到 ,获得积分10
28秒前
29秒前
caisongliang发布了新的文献求助30
33秒前
清秀的之桃完成签到 ,获得积分10
34秒前
李健的小迷弟应助www采纳,获得10
36秒前
光亮语梦完成签到 ,获得积分10
42秒前
www完成签到,获得积分10
44秒前
lalala完成签到 ,获得积分10
48秒前
wuludie应助科研通管家采纳,获得10
56秒前
caisongliang完成签到,获得积分10
59秒前
Yolenders完成签到 ,获得积分10
1分钟前
ljy2015完成签到 ,获得积分10
1分钟前
热心的飞风完成签到 ,获得积分10
2分钟前
2分钟前
liang19640908完成签到 ,获得积分10
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
科研通AI5应助fangyifang采纳,获得10
2分钟前
2分钟前
优雅的平安完成签到 ,获得积分10
2分钟前
送不送书7完成签到 ,获得积分10
2分钟前
Lanny完成签到 ,获得积分10
2分钟前
wuludie应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
wuludie应助科研通管家采纳,获得10
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
DoctorLily发布了新的文献求助10
3分钟前
MADAO完成签到 ,获得积分10
3分钟前
木之尹完成签到 ,获得积分10
3分钟前
和平完成签到 ,获得积分10
3分钟前
3分钟前
lily完成签到 ,获得积分10
3分钟前
Nancy0818完成签到 ,获得积分10
3分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736704
求助须知:如何正确求助?哪些是违规求助? 3280668
关于积分的说明 10020215
捐赠科研通 2997394
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656