Metallic Dendrites: How Far Can We Go?

化学 纳米技术 材料科学
作者
Rohini Kumari,Shubhangi Shubhangi,Daphika S. Dkhar,Pranjal Chandra
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.4c06456
摘要

Metallic dendrites, novel hierarchical nanostructures with a distinctive fern- or tree-like appearance, introduce a new era in sensing and wearable technologies. They possess several properties, including high surface area, crystal defects, grain boundaries, and edge sites, all of which contribute to an increased number of catalytic sites for sensing and wearable platforms, as well as functionalization sites for antibodies and drug molecules' adhesion. The aforementioned characteristics endow them with superior conductivity and enhanced catalytic activity, thereby facilitating improved mass and charge transfer rates of analytes in catalytic platforms. Since their discovery, there has been substantial progress in their synthesis, nanoengineering with composites, and extensive analytical applications in diverse domains, such as sensor platforms and wearables, fuel cells, supercapacitors, and drug delivery. Although platforms based on dendrites have performed well over the past ten years, their commercialization has yet to take place for a variety of reasons, primarily being the challenge to achieve homogeneity in large-scale synthesis due to uncontrolled development. Besides this, other challenges include transitioning to non-noble metals while still maintaining high activity and stability, as well as their sluggish metabolism in vivo following drug delivery and poor excretion by the body, which collectively hinder their translation. This Perspective encompasses important breakthroughs of metallic dendrites and analytical platforms based upon them, crucial knowledge gaps, and bottlenecks in commercialization with an eye towards the future of dendrite-based sensing, wearable electronics, as well as other such platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
wanci应助1111采纳,获得10
2秒前
隐形曼青应助文茵采纳,获得10
3秒前
认真的冥王星完成签到,获得积分10
3秒前
3秒前
sunwei完成签到,获得积分10
5秒前
Hello应助noit采纳,获得10
5秒前
科研通AI5应助kjkj采纳,获得10
5秒前
小小筱发布了新的文献求助10
6秒前
6秒前
科研通AI5应助星忆眠采纳,获得10
7秒前
liaoliao的招牌头子完成签到,获得积分10
7秒前
Season发布了新的文献求助10
9秒前
无限的隶发布了新的文献求助10
9秒前
nani完成签到,获得积分10
10秒前
柳辞发布了新的文献求助10
12秒前
15秒前
hujialiang完成签到,获得积分10
16秒前
16秒前
noit发布了新的文献求助10
20秒前
21秒前
Edgar完成签到,获得积分10
22秒前
23秒前
23秒前
Season完成签到,获得积分10
23秒前
26秒前
26秒前
Trends完成签到,获得积分10
27秒前
赘婿应助榴莲小胖采纳,获得10
27秒前
敏感的楷瑞完成签到,获得积分10
28秒前
科研小学生完成签到,获得积分10
28秒前
hzs完成签到,获得积分20
30秒前
31秒前
默默若枫发布了新的文献求助10
31秒前
松鼠15111完成签到,获得积分10
32秒前
32秒前
fiona完成签到,获得积分10
33秒前
liushoujia完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774527
求助须知:如何正确求助?哪些是违规求助? 3320227
关于积分的说明 10199137
捐赠科研通 3034929
什么是DOI,文献DOI怎么找? 1665282
邀请新用户注册赠送积分活动 796771
科研通“疑难数据库(出版商)”最低求助积分说明 757570