GseaVis: An R Package for Enhanced Visualization of Gene Set Enrichment Analysis in Biomedicine

生物医学 可视化 集合(抽象数据类型) 计算机科学 生物 数据挖掘 生物信息学 程序设计语言
作者
Jun Zhang,Hongyuan Li,Wenjun Tao,Jun Zhou
标识
DOI:10.1002/mdr2.70000
摘要

ABSTRACT Gene set enrichment analysis (GSEA) is a widely used computational method for determining whether predefined sets of genes show statistically significant concordant differences between two biological states. Despite its popularity, effective visualization of GSEA results remains challenging particularly for users seeking to extract meaningful insights without extensive programming knowledge. Although several tools are available for visualizing GSEA results, many lack the flexibility and customization options necessary for a comprehensive exploration of the data. For instance, the desktop GSEA software generates basic plots that are not publication ready and offer limited options for editing or modification. Users often encounter difficulties adjusting graphical parameters to achieve the desired level of customization or visual quality. Furthermore, traditional tools often fail to meet the demands of emerging analytical needs. For instance, they will lack the capability to effectively compare pathway activity levels across multiple experimental conditions. To bridge this gap, we introduce GseaVis, a user‐friendly R package specifically designed to simplify and enhance the visualization of GSEA results. GseaVis provides a variety of highly customizable and publication‐ready plots including enrichment plots, ranked gene heatmaps, and other forms of graphic visualizations of enriched gene sets. With its simple interface and flexibility, our tool significantly lowers the barrier for biologists and bioinformaticians to explore and present their GSEA data clearly and effectively. The GseaVis package is available on GitHub and is integrated with well‐established R libraries, allowing easy data manipulation and seamless integration into existing bioinformatics workflows. The GseaVis is publicly available via GitHub ( https://github.com/junjunlab/GseaVis ) for users’ access. A complete description of the usages can be found on the manuscript’s GitHub page ( https://junjunlab.github.io/gseavis‐manual/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1104发布了新的文献求助10
1秒前
Bruce完成签到,获得积分10
1秒前
Tingting完成签到 ,获得积分10
2秒前
IDHNAPHO完成签到,获得积分20
2秒前
开心最重要完成签到,获得积分10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
薄荷小姐完成签到,获得积分10
2秒前
cdercder应助科研通管家采纳,获得20
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
dd36完成签到,获得积分10
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
美夏应助科研通管家采纳,获得10
3秒前
cdercder应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
4秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
桐桐应助万万没想到采纳,获得10
5秒前
5秒前
5秒前
李爱国应助内向沛槐采纳,获得10
6秒前
光亮向雁完成签到 ,获得积分10
6秒前
冰西瓜最棒_完成签到,获得积分10
6秒前
无敌老金刚完成签到,获得积分10
6秒前
Shawn完成签到,获得积分10
7秒前
顾矜应助camellia采纳,获得10
7秒前
宝贝完成签到,获得积分10
7秒前
小马甲应助冰阔落采纳,获得10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Clinical Trials: A Methodologic Perspective 200
Essentials of Clinical Research 2nd Edition by Stephen P. Glasser 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695594
求助须知:如何正确求助?哪些是违规求助? 3247056
关于积分的说明 9853612
捐赠科研通 2958725
什么是DOI,文献DOI怎么找? 1622253
邀请新用户注册赠送积分活动 767867
科研通“疑难数据库(出版商)”最低求助积分说明 741293