Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: a multicenter machine learning analysis

神经影像学 电休克疗法 重性抑郁障碍 模式 磁共振成像 心理学 医学 临床心理学 精神科 放射科 心情 精神分裂症(面向对象编程) 社会科学 社会学
作者
Willem B. Bruin,Leif Oltedal,Hauke Bartsch,Chris Abbott,Miklós Árgyelán,Tracy Barbour,Joan A. Camprodon,Samadrita Roy Chowdhury,Randall Espinoza,Peter Mulders,Katherine L. Narr,Mardien L. Oudega,Didi Rhebergen,Freek ten Doesschate,Indira Tendolkar,Philip van Eijndhoven,Eric van Exel,Mike van Verseveld,Benjamin Wade,Jeroen van Waarde,Paul Zhutovsky,Annemiek Dols,Guido van Wingen
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:54 (3): 495-506 被引量:7
标识
DOI:10.1017/s0033291723002040
摘要

Abstract Background Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. Methods Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. Results Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82–0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers ( N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70–0.73 AUC). Conclusions These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研CY完成签到 ,获得积分10
1秒前
晨雾锁阳完成签到 ,获得积分10
1秒前
口口完成签到 ,获得积分10
3秒前
Anonymous完成签到,获得积分10
6秒前
半斤完成签到 ,获得积分10
6秒前
程哲瀚完成签到,获得积分10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
xiaxiao应助科研通管家采纳,获得80
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
小铁匠应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
9秒前
英姑应助直率的花生采纳,获得10
9秒前
安然完成签到 ,获得积分10
9秒前
xyzlancet完成签到,获得积分10
11秒前
完美世界应助chenlichan采纳,获得10
12秒前
刘刘完成签到,获得积分10
20秒前
个性松完成签到 ,获得积分10
23秒前
柴子完成签到,获得积分10
26秒前
27秒前
CodeCraft应助热心平凡采纳,获得10
27秒前
欣欣发布了新的文献求助10
28秒前
小茵茵完成签到,获得积分10
30秒前
hhh发布了新的文献求助10
30秒前
勤恳的断秋完成签到 ,获得积分10
31秒前
告白气球发布了新的文献求助10
32秒前
飘逸宛丝完成签到,获得积分10
32秒前
32秒前
JamesPei应助zh采纳,获得10
33秒前
开放子默完成签到 ,获得积分10
33秒前
zhengnan666发布了新的文献求助10
36秒前
zz发布了新的文献求助10
37秒前
直率的花生完成签到,获得积分10
39秒前
zhangjianzeng完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511071
关于积分的说明 11156136
捐赠科研通 3245633
什么是DOI,文献DOI怎么找? 1793097
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268