Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: a multicenter machine learning analysis

神经影像学 电休克疗法 重性抑郁障碍 模式 磁共振成像 心理学 医学 临床心理学 精神科 放射科 心情 精神分裂症(面向对象编程) 社会科学 社会学
作者
Willem B. Bruin,Leif Oltedal,Hauke Bartsch,Chris Abbott,Miklós Árgyelán,Tracy Barbour,Joan A. Camprodon,Samadrita Roy Chowdhury,Randall Espinoza,Peter Mulders,Katherine L. Narr,Mardien L. Oudega,Didi Rhebergen,Freek ten Doesschate,Indira Tendolkar,Philip van Eijndhoven,Eric van Exel,Mike van Verseveld,Benjamin Wade,Jeroen van Waarde,Paul Zhutovsky,Annemiek Dols,Guido van Wingen
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:54 (3): 495-506 被引量:7
标识
DOI:10.1017/s0033291723002040
摘要

Abstract Background Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. Methods Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. Results Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82–0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers ( N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70–0.73 AUC). Conclusions These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIUBEN发布了新的文献求助10
刚刚
科研通AI6应助kellina采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
vanliu发布了新的文献求助10
1秒前
科研通AI5应助冷酷小松鼠采纳,获得10
1秒前
1秒前
Lucas应助DG采纳,获得10
2秒前
lebrongsy完成签到,获得积分10
2秒前
莞尔沏春茶完成签到,获得积分10
3秒前
4秒前
科研通AI6应助Running采纳,获得10
4秒前
5秒前
浮游应助czy采纳,获得10
5秒前
冷酷小松鼠完成签到,获得积分10
6秒前
6秒前
明理苑博发布了新的文献求助10
6秒前
lucyliu完成签到 ,获得积分10
7秒前
7秒前
cm完成签到 ,获得积分10
7秒前
林间发布了新的文献求助10
8秒前
wanci应助123采纳,获得10
8秒前
wangxipeng完成签到,获得积分10
9秒前
123456完成签到,获得积分10
11秒前
11秒前
喵喵完成签到,获得积分10
11秒前
慕青应助daqiao采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
kellina完成签到,获得积分10
12秒前
12秒前
昨夜書完成签到,获得积分10
12秒前
12秒前
无花果应助林间采纳,获得10
13秒前
归谷完成签到 ,获得积分20
15秒前
DG发布了新的文献求助10
15秒前
16秒前
大模型应助科研顺荔采纳,获得10
17秒前
昨夜書发布了新的文献求助10
17秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601699
求助须知:如何正确求助?哪些是违规求助? 4011262
关于积分的说明 12418861
捐赠科研通 3691306
什么是DOI,文献DOI怎么找? 2035016
邀请新用户注册赠送积分活动 1068302
科研通“疑难数据库(出版商)”最低求助积分说明 952792