Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: a multicenter machine learning analysis

神经影像学 电休克疗法 重性抑郁障碍 模式 磁共振成像 心理学 医学 临床心理学 精神科 放射科 心情 精神分裂症(面向对象编程) 社会科学 社会学
作者
Willem B. Bruin,Leif Oltedal,Hauke Bartsch,Chris Abbott,Miklós Árgyelán,Tracy Barbour,Joan A. Camprodon,Samadrita Roy Chowdhury,Randall Espinoza,Peter Mulders,Katherine L. Narr,Mardien L. Oudega,Didi Rhebergen,Freek ten Doesschate,Indira Tendolkar,Philip van Eijndhoven,Eric van Exel,Mike van Verseveld,Benjamin Wade,Jeroen van Waarde,Paul Zhutovsky,Annemiek Dols,Guido van Wingen
出处
期刊:Psychological Medicine [Cambridge University Press]
卷期号:54 (3): 495-506 被引量:7
标识
DOI:10.1017/s0033291723002040
摘要

Abstract Background Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. Methods Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. Results Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82–0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers ( N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70–0.73 AUC). Conclusions These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的胜发布了新的文献求助10
1秒前
张倩完成签到,获得积分10
2秒前
manyi1972发布了新的文献求助10
3秒前
李爱国应助开心夏真采纳,获得10
6秒前
7秒前
7秒前
7秒前
smallxiao完成签到 ,获得积分10
7秒前
哗哗鱼完成签到,获得积分10
9秒前
优雅小兔子完成签到 ,获得积分10
10秒前
张峻瑞发布了新的文献求助10
12秒前
13秒前
万能图书馆应助菠萝采纳,获得10
13秒前
内向南风完成签到 ,获得积分10
13秒前
香蕉觅云应助诶嘿采纳,获得10
15秒前
manyi1972完成签到,获得积分10
16秒前
龙飞凤舞完成签到,获得积分10
20秒前
20秒前
以拟为隐完成签到,获得积分10
21秒前
隐形世开完成签到 ,获得积分10
24秒前
24秒前
28秒前
爱静静应助小妮子采纳,获得10
28秒前
仁爱曼梅完成签到,获得积分10
28秒前
29秒前
你可真下饭完成签到 ,获得积分10
31秒前
Lucas应助油炸小甜糕砸采纳,获得10
32秒前
李思超完成签到,获得积分20
32秒前
诶嘿发布了新的文献求助10
34秒前
顾矜应助优雅小兔子采纳,获得10
34秒前
仁爱曼梅发布了新的文献求助10
34秒前
fnufhus发布了新的文献求助10
35秒前
马美丽完成签到 ,获得积分10
36秒前
36秒前
39秒前
AJY完成签到,获得积分10
43秒前
123发布了新的文献求助10
44秒前
fnufhus完成签到,获得积分10
46秒前
46秒前
yifan92完成签到,获得积分10
46秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314834
求助须知:如何正确求助?哪些是违规求助? 2946991
关于积分的说明 8533566
捐赠科研通 2623006
什么是DOI,文献DOI怎么找? 1434879
科研通“疑难数据库(出版商)”最低求助积分说明 665384
邀请新用户注册赠送积分活动 651061