Imputation of missing clinical, cognitive and neuroimaging data of Dementia using missForest, a Random Forest based algorithm

缺少数据 插补(统计学) 神经影像学 痴呆 随机森林 计算机科学 人工智能 阿尔茨海默病神经影像学倡议 机器学习 认知障碍 认知 算法 心理学 医学 疾病 精神科 内科学
作者
Federica Aracri,Maria Giovanna Bianco,Andrea Quattrone,Alessia Sarica
标识
DOI:10.1109/cbms58004.2023.00300
摘要

Missing value issue is often encountered in international Neuroscience and Neuroimaging databases. As many statistical methods and Machine Learning (ML) algorithms are not designed to work with missing data, usually all variables associated with these records are removed, losing information and negatively affecting performance of neurodegenerative diseases classification such as Dementia. A reliable alternative is to employ imputation to substitute missing values, for example with the mean (I mean ), which is widely applied. Recently, missForest (MF), a Random Forest based algorithm - became popular for handling missing data in biomedical research. Thus, we aimed at assessing the reliability of MF in solving the missingness problem in a cohort of Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) patients from international database Alzheimer's Disease Neuroimaging Initiative (ADNI), with clinical, cognitive and neuroimaging features. First, we amputed the complete dataset with increasing percentage of missing data (from 10% to 80 % ) by applying Missing Completely At Random (MCAR). Then, we used I mean and MF approaches on amputed datasets and we compared their imputation error (RSME, NRSME, MAE). When average error on all features was considered, MF showed better performance than I mean in each amputation percentage. However, when comparing error on single features, MF had slight performance decrease compared with I mean on cognitive features ADAS, RAVLT and MMSE, regardless of the amputation percentage. We conclude that missForest resulted to be a reliable imputation algorithm for handling missing neuroscience data, although it should be used with caution on highly skewed variables, such as cognitive scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
藜誌完成签到,获得积分10
1秒前
dreamode完成签到,获得积分10
1秒前
3秒前
田様应助小福采纳,获得10
3秒前
端庄的小蝴蝶完成签到,获得积分10
4秒前
天天快乐应助自信白凡采纳,获得10
4秒前
4秒前
藜誌发布了新的文献求助10
5秒前
5秒前
xcf完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助50
5秒前
bioseraph发布了新的文献求助10
6秒前
ys发布了新的文献求助10
7秒前
ZhangL发布了新的文献求助10
8秒前
9秒前
从容芸发布了新的文献求助160
10秒前
10秒前
科研通AI5应助碧蓝雨安采纳,获得10
10秒前
虚心星星完成签到,获得积分20
10秒前
微微发布了新的文献求助10
11秒前
开庆完成签到,获得积分10
11秒前
13秒前
yyy发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
研友_xLOMQZ完成签到,获得积分0
14秒前
14秒前
脆脆发布了新的文献求助10
14秒前
16秒前
浮游应助藜誌采纳,获得10
16秒前
16秒前
嘉树林发布了新的文献求助10
16秒前
科研通AI6应助hen23333采纳,获得10
16秒前
16秒前
钻石DrWang完成签到 ,获得积分10
17秒前
懵懂的毛豆应助jing采纳,获得10
18秒前
丘比特应助咩咩羊采纳,获得10
20秒前
20秒前
cyq发布了新的文献求助10
20秒前
20秒前
笨笨烨华完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601983
求助须知:如何正确求助?哪些是违规求助? 4011438
关于积分的说明 12419208
捐赠科研通 3691523
什么是DOI,文献DOI怎么找? 2035123
邀请新用户注册赠送积分活动 1068423
科研通“疑难数据库(出版商)”最低求助积分说明 952869