亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Imputation of missing clinical, cognitive and neuroimaging data of Dementia using missForest, a Random Forest based algorithm

缺少数据 插补(统计学) 神经影像学 痴呆 随机森林 计算机科学 人工智能 阿尔茨海默病神经影像学倡议 机器学习 认知障碍 认知 算法 心理学 医学 疾病 精神科 内科学
作者
Federica Aracri,Maria Giovanna Bianco,Andrea Quattrone,Alessia Sarica
标识
DOI:10.1109/cbms58004.2023.00300
摘要

Missing value issue is often encountered in international Neuroscience and Neuroimaging databases. As many statistical methods and Machine Learning (ML) algorithms are not designed to work with missing data, usually all variables associated with these records are removed, losing information and negatively affecting performance of neurodegenerative diseases classification such as Dementia. A reliable alternative is to employ imputation to substitute missing values, for example with the mean (I mean ), which is widely applied. Recently, missForest (MF), a Random Forest based algorithm - became popular for handling missing data in biomedical research. Thus, we aimed at assessing the reliability of MF in solving the missingness problem in a cohort of Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) patients from international database Alzheimer's Disease Neuroimaging Initiative (ADNI), with clinical, cognitive and neuroimaging features. First, we amputed the complete dataset with increasing percentage of missing data (from 10% to 80 % ) by applying Missing Completely At Random (MCAR). Then, we used I mean and MF approaches on amputed datasets and we compared their imputation error (RSME, NRSME, MAE). When average error on all features was considered, MF showed better performance than I mean in each amputation percentage. However, when comparing error on single features, MF had slight performance decrease compared with I mean on cognitive features ADAS, RAVLT and MMSE, regardless of the amputation percentage. We conclude that missForest resulted to be a reliable imputation algorithm for handling missing neuroscience data, although it should be used with caution on highly skewed variables, such as cognitive scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
猫七发布了新的文献求助10
5秒前
8秒前
猫七发布了新的文献求助10
12秒前
14秒前
猫七发布了新的文献求助10
20秒前
23秒前
Tuesday完成签到 ,获得积分10
25秒前
猫七发布了新的文献求助50
27秒前
28秒前
47秒前
猫七发布了新的文献求助10
50秒前
aikeyan完成签到 ,获得积分10
51秒前
51秒前
53秒前
56秒前
猫七发布了新的文献求助10
56秒前
59秒前
1分钟前
valete发布了新的文献求助10
1分钟前
猫七发布了新的文献求助10
1分钟前
1分钟前
夕诙应助呀!我可以的采纳,获得30
1分钟前
cocolu应助呀!我可以的采纳,获得30
1分钟前
猫七发布了新的文献求助10
1分钟前
1分钟前
kimi_saigou完成签到,获得积分10
1分钟前
猫七发布了新的文献求助10
1分钟前
小方完成签到,获得积分10
1分钟前
yoyo完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
valete完成签到,获得积分10
1分钟前
猫七发布了新的文献求助10
1分钟前
橙子呀~发布了新的文献求助10
1分钟前
1分钟前
猫七发布了新的文献求助10
1分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463596
求助须知:如何正确求助?哪些是违规求助? 3057019
关于积分的说明 9055000
捐赠科研通 2746921
什么是DOI,文献DOI怎么找? 1507154
科研通“疑难数据库(出版商)”最低求助积分说明 696405
邀请新用户注册赠送积分活动 695916