自噬
生物
先天免疫系统
病毒复制
病毒
病毒学
细胞生物学
干扰素
钻机-I
免疫系统
免疫学
生物化学
细胞凋亡
作者
Huijun Zhang,Xiangwei Wang,Min Qu,Zhiyong Li,Xiangping Yin,Lijie Tang,Xiangtao Liu,Yuefeng Sun
出处
期刊:Autophagy
[Informa]
日期:2023-07-06
卷期号:19 (11): 2869-2883
被引量:8
标识
DOI:10.1080/15548627.2023.2233847
摘要
Macroautophagy/autophagy has been utilized by many viruses, including foot-and-mouth disease virus (FMDV), to facilitate replication, while the underlying mechanism of the interplay between autophagy and innate immune responses is still elusive. This study showed that HDAC8 (histone deacetylase 8) inhibits FMDV replication by regulating innate immune signal transduction and antiviral response. To counteract the HDAC8 effect, FMDV utilizes autophagy to promote HDAC8 degradation. Further data showed that FMDV structural protein VP3 promotes autophagy during virus infection and interacts with and degrades HDAC8 in an AKT-MTOR-ATG5-dependent autophagy pathway. Our data demonstrated that FMDV evolved a strategy to counteract host antiviral activity by autophagic degradation of a protein that regulates innate immune response during virus infection.Abbreviations: 3-MA: 3-methyladenine; ATG: autophagy related; Baf-A1: bafilomycin A1; CCL5: C-C motif chemokine ligand 5; Co-IP: co-immunoprecipitation; CQ: chloroquine phosphate; DAPI: 4”,6-diamidino-2-phenylindole; FMDV: foot-and-mouth disease virus; HDAC8: histone deacetylase 8; ISG: IFN-stimulated gene; IRF3: interferon regulatory factor 3; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MAVS: mitochondria antiviral signaling protein; OAS: 2”−5’-oligoadenylate synthetase; RB1: RB transcriptional corepressor 1; SAHA: suberoylanilide hydroxamic acid; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; TNF/TNF-α: tumor necrosis factor; TSA: trichostatin A; UTR: untranslated region.
科研通智能强力驱动
Strongly Powered by AbleSci AI