Graph features dynamic fusion learning driven by multi-head attention for large rotating machinery fault diagnosis with multi-sensor data

计算机科学 Softmax函数 保险丝(电气) 分类器(UML) 人工智能 模式识别(心理学) 图形 特征选择 断层(地质) 数据挖掘 过程(计算) 传感器融合 人工神经网络 机器学习 理论计算机科学 地质学 地震学 电气工程 工程类 操作系统
作者
Xin Zhang,Xi Zhang,Jie Liu,Bo Wu,Youmin Hu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:125: 106601-106601 被引量:44
标识
DOI:10.1016/j.engappai.2023.106601
摘要

Recently, rotating machinery fault diagnosis studies based on graph neural networks (GNN) have received some satisfactory achievements. But most of them are based on the analysis of the single sensor signals, which cannot capture the comprehensive fault information, especially aiming at large rotating machineries. A few research using GNN for multi-sensor fault diagnosis only fuse multi-source features in the construction of the input graph, and the fusion effect largely depends on the manual feature selection. Graph attention network (GAT), as an emerging GNN, can give trainable weights to vertices based on the self-attention mechanism to improve the effectiveness of feature learning. And it has not yet been used in the field of multi-sensor fault diagnosis. To fill this gap and utilize GAT’s advantages, this paper presents a multi-sensor multi-head GAT (MMHGAT) model for large rotating machinery fault diagnosis. With the input of several subgraphs, the designed MMHGAT model consisting of two graph attention layers (GAL), a feature fusion process and a Softmax classifier, can dynamically fuse and mine the high-level fault characteristics during the training process. By employing the experiment on the axial flow pump, the effectiveness and superiority of the proposed method are validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sjie完成签到 ,获得积分10
2秒前
平淡的凝竹完成签到,获得积分10
3秒前
林正心发布了新的文献求助20
3秒前
hjjjjj1完成签到,获得积分10
4秒前
付其喜完成签到,获得积分10
4秒前
阿航发布了新的文献求助30
4秒前
Gloria完成签到,获得积分10
6秒前
pluto应助believe采纳,获得10
6秒前
6秒前
6秒前
6秒前
臧佳莹发布了新的文献求助10
7秒前
小胡完成签到,获得积分10
7秒前
风中亦旋完成签到,获得积分10
9秒前
赘婿应助Pom采纳,获得10
11秒前
CaoRouLi发布了新的文献求助10
11秒前
阿航完成签到,获得积分20
11秒前
橘子发布了新的文献求助10
12秒前
12秒前
www发布了新的文献求助10
13秒前
NexusExplorer应助小豆芽采纳,获得10
13秒前
11发布了新的文献求助10
14秒前
16秒前
liangye2222发布了新的文献求助10
17秒前
17秒前
白桥完成签到,获得积分10
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
czh应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
橘子完成签到,获得积分10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
核桃应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068