Temporally Correlated Compressed Sensing Using Generative Models for Channel Estimation in Unmanned Aerial Vehicles

计算机科学 频道(广播) 多输入多输出 欠定系统 压缩传感 算法 贝叶斯概率 人工智能 电信
作者
Nilesh Kumar Jha,Vincent K. N. Lau
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2112-2124 被引量:3
标识
DOI:10.1109/twc.2023.3295449
摘要

Bayesian modelling of the channel distribution is a crucial step before channel recovery specially in the underdetermined scenario in multiple input multiple output (MIMO) antenna setups. In complicated dynamic propagation environments such as the ones encountered in Unmanned Aerial Vehicles (UAVs) Air to Ground (A2G) channels, Bayesian modelling might not be feasible or the model may not be able to approximate the different aspects of the true distribution well enough. Thus, estimation performance will be affected irrespective of the efficiency of recovery algorithm. To exploit the temporal correlations and imperfections in the real channels in such a scenario, we design a temporally correlated adversarial regulariser using Variational recurrent neural networks (VRNN) and train the framework on simulated channel dataset. The framework can be trained directly with channel samples, thus, allowing channel modelling and estimation without explicit tractable Bayesian models in highly dynamic systems. We then propose a temporally correlated deep compressed sensing algorithm which does not depend on the expressibility of the networks and provide theoretical results for existence and recovery. Numerical experiments demonstrate its effectiveness for channel estimation in A2G channels and show superior channel recovery and improved modelling even for out-of-distribution channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bleem完成签到,获得积分10
刚刚
john应助specialling采纳,获得10
刚刚
神勇太清发布了新的文献求助10
刚刚
NexusExplorer应助调皮的妙竹采纳,获得10
1秒前
1秒前
paws完成签到,获得积分10
1秒前
2秒前
情怀应助闲听花落采纳,获得10
3秒前
wanci应助使劲学的cc采纳,获得10
5秒前
迷你的寒梅完成签到,获得积分10
5秒前
6秒前
6秒前
慕青应助端庄的豆芽采纳,获得10
6秒前
A梦_Li发布了新的文献求助10
7秒前
科研通AI2S应助红豆采纳,获得10
7秒前
7秒前
ZZ发布了新的文献求助20
8秒前
一一应助李龙波采纳,获得10
8秒前
爆米花应助章如豹采纳,获得10
9秒前
鲁晓涵完成签到,获得积分10
9秒前
Orange应助呆呆的猕猴桃采纳,获得10
10秒前
平淡的翠霜完成签到,获得积分20
10秒前
小白发布了新的文献求助10
11秒前
12秒前
可可可达鸭完成签到 ,获得积分10
13秒前
星叶发布了新的文献求助10
13秒前
西西xixi发布了新的文献求助30
13秒前
14秒前
卤化氢完成签到 ,获得积分10
14秒前
16秒前
小杨发布了新的文献求助10
16秒前
17秒前
HEIKU应助l123采纳,获得10
17秒前
领导范儿应助干净的笑卉采纳,获得10
18秒前
大菠萝不会去仙王座练功完成签到,获得积分10
19秒前
彭于晏应助G.E.P.MrLiu采纳,获得10
19秒前
喵喵喵发布了新的文献求助10
19秒前
梁大帅发布了新的文献求助20
20秒前
超级无敌喜欢王俊凯完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543189
求助须知:如何正确求助?哪些是违规求助? 3120593
关于积分的说明 9343357
捐赠科研通 2818645
什么是DOI,文献DOI怎么找? 1549711
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713076