Compressive properties and deformation mechanism of selective laser melting of Ti6Al4V porous femoral implants based on topological optimization

材料科学 多孔性 选择性激光熔化 复合材料 透水混凝土 变形(气象学) 抗压强度 变形机理 下降(电信) 多孔介质 弹性模量 水泥 机械工程 微观结构 工程类
作者
Hai Li,Bibo Yao,Zhenhua Li,Y.Z. Peng,Huili Fan
出处
期刊:Composite Structures [Elsevier]
卷期号:321: 117326-117326 被引量:13
标识
DOI:10.1016/j.compstruct.2023.117326
摘要

Although the design and mechanical properties of the porous structure have been widely explored, the porous structure and the unit cell with excellent mechanical properties matching the demands of femur should be further investigated. In this research, a porous structure based on face-centered cubic unit cell was constructed to match the femur's natural state and vertical direction at an angle of 7° via structural topology optimization. Three types of Ti6Al4V porous structures with different pore sizes were produced by selective laser melting (SLM). The influence of porosity on the compressive properties and deformation mechanisms was analyzed by experiments and simulations. In the compression process of three porous structures with different porosities, there are four obvious stages: the early elastic stage, the abrupt drop stage following stress increase, the Area III, and the ultimate densification stage. However, the four stages of porous structure vary in porosity. When the porosity is 81.5 %, the stress fluctuates in the region where the abrupt drop stage following stress increase. With increasing porosity, Young's modulus and yield strength decrease. Only the porous structure with a pore diameter of 0.7 mm and porosity of 67.5 % has a Young's modulus and yield strength meeting the requirements of bones, and is the best bone replacement. Bending is the unit cell's main deformation mechanism based on Maxwell equation analysis. Both the Johnson-Cook constitutive model and the experimental data demonstrate the shear deformation of porous structures. In comparison to the compressive performance of unit cells designed using traditional methods, the topology optimization's unit cells exhibit higher relative Young's modulus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助szl采纳,获得10
1秒前
1秒前
赤邪完成签到,获得积分20
1秒前
小蘑菇应助复杂曼梅采纳,获得10
2秒前
3秒前
sexing完成签到,获得积分20
3秒前
你好发布了新的文献求助150
4秒前
4秒前
BareBear应助wfc采纳,获得10
5秒前
Dsivan发布了新的文献求助10
5秒前
5秒前
可爱的函函应助赤邪采纳,获得10
6秒前
义气的傲松完成签到,获得积分20
6秒前
张zi完成签到,获得积分10
6秒前
wtg发布了新的文献求助10
7秒前
法一完成签到 ,获得积分10
7秒前
充电宝应助ysl采纳,获得30
8秒前
8秒前
诸葛语蝶完成签到,获得积分10
8秒前
通~发布了新的文献求助10
8秒前
xpp完成签到 ,获得积分10
9秒前
dyh6802发布了新的文献求助10
9秒前
9秒前
10秒前
短腿小柯基完成签到,获得积分10
10秒前
完美世界应助研一小刘采纳,获得10
10秒前
10秒前
水萝卜完成签到 ,获得积分10
11秒前
11秒前
高高完成签到,获得积分10
12秒前
甜甜晓露发布了新的文献求助10
12秒前
ChiDaiOLD发布了新的文献求助10
13秒前
14秒前
szl完成签到,获得积分10
14秒前
15秒前
orixero应助跳跃的静曼采纳,获得10
15秒前
诺奖离我十万八千里完成签到,获得积分10
15秒前
高高发布了新的文献求助10
15秒前
19秒前
深情安青应助机智的青槐采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808