Adaptive Region-Specific Loss for Improved Medical Image Segmentation

计算机科学 加权 人工智能 分割 图像分割 人工神经网络 图像(数学) 深度学习 模式识别(心理学) 机器学习 功能(生物学) 数据挖掘 医学 进化生物学 生物 放射科
作者
Yizheng Chen,Lequan Yu,Jen‐Yeu Wang,Neil Panjwani,Jean‐Pierre Obeid,Wu Liu,Lianli Liu,Nataliya Kovalchuk,Michael F. Gensheimer,Lucas K. Vitzthum,Beth M. Beadle,Daniel T. Chang,Quynh‐Thu Le,Bin Han,Lei Xing
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (11): 13408-13421 被引量:19
标识
DOI:10.1109/tpami.2023.3289667
摘要

Defining the loss function is an important part of neural network design and critically determines the success of deep learning modeling. A significant shortcoming of the conventional loss functions is that they weight all regions in the input image volume equally, despite the fact that the system is known to be heterogeneous (i.e., some regions can achieve high prediction performance more easily than others). Here, we introduce a region-specific loss to lift the implicit assumption of homogeneous weighting for better learning. We divide the entire volume into multiple sub-regions, each with an individualized loss constructed for optimal local performance. Effectively, this scheme imposes higher weightings on the sub-regions that are more difficult to segment, and vice versa. Furthermore, the regional false positive and false negative errors are computed for each input image during a training step and the regional penalty is adjusted accordingly to enhance the overall accuracy of the prediction. Using different public and in-house medical image datasets, we demonstrate that the proposed regionally adaptive loss paradigm outperforms conventional methods in the multi-organ segmentations, without any modification to the neural network architecture or additional data preparation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
尼卡完成签到,获得积分10
1秒前
1秒前
浦肯野应助sjn采纳,获得50
1秒前
susu完成签到,获得积分10
2秒前
康康XY完成签到 ,获得积分10
2秒前
Ash完成签到 ,获得积分10
2秒前
kira发布了新的文献求助10
2秒前
liyang发布了新的文献求助10
3秒前
niumi190完成签到,获得积分10
3秒前
苗从阳完成签到,获得积分10
3秒前
3秒前
qiqi完成签到,获得积分10
4秒前
汉堡包应助SIDEsss采纳,获得10
4秒前
阿吉泰完成签到,获得积分10
4秒前
lfg发布了新的文献求助10
5秒前
panda完成签到,获得积分10
5秒前
jarenthar完成签到 ,获得积分10
5秒前
李二狗完成签到,获得积分10
5秒前
5秒前
5秒前
乐乐应助吴雨采纳,获得10
6秒前
李健的粉丝团团长应助xdf采纳,获得10
6秒前
Lemuel完成签到,获得积分10
6秒前
123456发布了新的文献求助10
6秒前
阿童木完成签到,获得积分10
6秒前
7秒前
虚幻白桃完成签到,获得积分10
7秒前
7秒前
研友_Ze02Vn发布了新的文献求助30
7秒前
8秒前
8秒前
甜蜜采波完成签到,获得积分10
9秒前
9秒前
shi hui应助0612采纳,获得10
9秒前
我住隔壁我姓王完成签到,获得积分10
10秒前
彭a完成签到,获得积分10
11秒前
Ava应助阔达磬采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550646
求助须知:如何正确求助?哪些是违规求助? 3126911
关于积分的说明 9371446
捐赠科研通 2826139
什么是DOI,文献DOI怎么找? 1553554
邀请新用户注册赠送积分活动 724960
科研通“疑难数据库(出版商)”最低求助积分说明 714494