Ship Collision Avoidance Navigation Signal Recognition via Vision Sensing and Machine Forecasting

避碰 计算机视觉 人工智能 计算机科学 机器视觉 领域(数学) 导航系统 方位(导航) 信号(编程语言) 阿达布思 碰撞 工程类 支持向量机 计算机安全 数学 纯数学 程序设计语言
作者
Qilin Bi,Miaohui Wang,Yi‐Jing Huang,Minling Lai,Zhijun Liu,Xiuying Bi
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 11743-11755 被引量:5
标识
DOI:10.1109/tits.2023.3287709
摘要

Ship collision avoidance (SCA) is an important technique in the field of decision-making in marine navigation. Although some promising solutions have been developed recently, there is still the lack of low-cost and reliable sensing equipment. Inspired by the low-cost of camera sensors and the success of machine learning, this paper designs a vision-based method to recognize ships and their micro-features for SCA navigation planning. Firstly, we develop a vision-based bearing, distance and velocity model based on a wide-field optical imaging system. Secondly, optical information is used to construct the micro-characteristic imaging model of ship navigation signals. Thirdly, we have solved the problem between a large field-of-view (FOV) and high-resolution imaging in vision-based marine navigation. Finally, an improved Adaboost algorithm is designed for the intelligent recognition of an open-sea target (ship types and light patterns). The proposed method has been verified by extensive experiments in a practical environment, and the results show that it can effectively and efficiently identify the navigation signal of a target ship.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助wangjue采纳,获得10
刚刚
踏实含之发布了新的文献求助20
1秒前
3秒前
4秒前
亨先生发布了新的文献求助30
5秒前
彩色的平露完成签到,获得积分10
6秒前
辣椒油油发布了新的文献求助30
6秒前
狂野风华完成签到 ,获得积分10
9秒前
俭朴晓凡完成签到,获得积分20
10秒前
11秒前
12秒前
13秒前
浮游应助舒适静丹采纳,获得10
14秒前
15秒前
16秒前
的速度发布了新的文献求助10
16秒前
香菜完成签到,获得积分10
17秒前
JamesPei应助落后的老太采纳,获得10
18秒前
19秒前
wangjue发布了新的文献求助10
20秒前
万籁的夏天完成签到,获得积分10
21秒前
22秒前
慕青应助Tang采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
踏实含之完成签到,获得积分20
26秒前
26秒前
再学一分钟完成签到,获得积分10
27秒前
且欣且行完成签到 ,获得积分10
27秒前
28秒前
30秒前
30秒前
YY发布了新的文献求助10
30秒前
中中中发布了新的文献求助10
30秒前
大个应助一er采纳,获得10
30秒前
乐乐应助高挑的冷亦采纳,获得30
30秒前
32秒前
英姑应助踏实含之采纳,获得10
32秒前
于鱼发布了新的文献求助10
33秒前
的速度完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553289
求助须知:如何正确求助?哪些是违规求助? 4637819
关于积分的说明 14651261
捐赠科研通 4579708
什么是DOI,文献DOI怎么找? 2511828
邀请新用户注册赠送积分活动 1486770
关于科研通互助平台的介绍 1457694