Path tracking control method for automatic navigation rice transplanters based on VUFC and improved BAS algorithm

控制理论(社会学) 计算机科学 路径(计算) 理论(学习稳定性) 跟踪(教育) 量化(信号处理) 算法 模糊逻辑 数学优化 数学 人工智能 控制(管理) 机器学习 心理学 教育学 程序设计语言
作者
Dequan Zhu,M. Shi,Li Wang,Kang Xue,Juan Liao,Wei Xiong,Fuming Kuang,Shun Zhang
出处
期刊:Robotica [Cambridge University Press]
卷期号:41 (10): 3116-3136 被引量:3
标识
DOI:10.1017/s0263574723000905
摘要

Abstract During the operation of automatic navigation rice transplanter, the accuracy of path tracking is influenced by whether the transplanter can enter the stable state of linear path tracking quickly, thus affecting the operation quality and efficiency. To reduce the time to enter the path tracking stable state and improve the tracking accuracy and stability for the rice transplanter, path tracking control method based on variable universe fuzzy control (VUFC) and improved beetle antenna search (BAS) is proposed in this paper. VUFC is applied to achieve adaptive adjustment of the fuzzy universe by dynamically adjusting the quantization and scaling factors according to the variations of errors by the contraction–expansion factor. To solve the problem of setting the contraction–expansion factor in VUFC and real-time performance, an offline parameter optimization method is presented to calculate the optimal contraction–expansion factor by an iterative optimization algorithm in a path tracking simulation model, where the iterative optimization algorithm is the BAS algorithm improved by the isolated niching technique and adaptive step size strategy in this paper. To verify the effectiveness of the proposed path tracking control method, simulation and field linear path tracking experiments were carried out. Experimental results indicate that the proposed method reduces the time of entering the stable state of linear path tracking and improves the accuracy and stability of path tracking compared with the pure pursuit control method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助adazbd采纳,获得10
刚刚
bkagyin应助皮皮桂采纳,获得10
刚刚
1秒前
重要的哈密瓜完成签到 ,获得积分10
1秒前
会飞的云完成签到 ,获得积分10
2秒前
2秒前
毕不了业的凡阿哥完成签到,获得积分10
2秒前
野子发布了新的文献求助10
2秒前
berry完成签到,获得积分10
3秒前
4秒前
LUNWENREQUEST发布了新的文献求助10
4秒前
大模型应助匹诺曹采纳,获得10
5秒前
ding应助过时的又槐采纳,获得10
6秒前
9秒前
鄙视注册完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
落寞溪灵完成签到 ,获得积分10
13秒前
玖玖柒idol完成签到,获得积分10
13秒前
曌虞完成签到,获得积分10
13秒前
14秒前
啥,这都是啥完成签到,获得积分10
14秒前
皮皮桂发布了新的文献求助10
15秒前
16秒前
大大发布了新的文献求助10
16秒前
17秒前
orixero应助wang1090采纳,获得30
19秒前
19秒前
l11x29发布了新的文献求助10
21秒前
lin完成签到,获得积分10
21秒前
大侠发布了新的文献求助10
22秒前
22秒前
是锦锦呀完成签到,获得积分10
22秒前
22秒前
李秋静发布了新的文献求助10
23秒前
zhen发布了新的文献求助50
25秒前
是锦锦呀发布了新的文献求助60
25秒前
Khr1stINK发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808