Reinforcement learning of route choice considering traveler’s preference

偏爱 强化学习 偏好学习 计算机科学 钢筋 旅游行为 增强学习 过程(计算) 运筹学 人工智能 微观经济学 工程类 经济 心理学 社会心理学 操作系统
作者
Xueqin Long,Jianxu Mao,Zhongbao Qiao,Peng Li,Wei He
出处
期刊:Transportation Letters: The International Journal of Transportation Research [Informa]
卷期号:: 1-14 被引量:3
标识
DOI:10.1080/19427867.2023.2231689
摘要

ABSTRACTABSTRACTTravelers always perform some preference during the decision-making process. The preference will affect the decision results and can be improved by continuously learning. In order to understand the influence of individual preference on travel behavior choice , two individual preferences, including indifference preference and compulsive preference are considered in the paper. Two updating mechanisms of compulsive preference are proposed to obtain the choosing probability of all alternatives. Reinforcement learning models are established integrating the gain stimulating and loss stimulating considering expected utility. Nguyen Dupuis network is adopted for numerical simulation to study the updating process. Simulation results denote that the equilibrium state is much more efficient when preference learning mechanism is considered comparing with the traditional stochastic user equilibrium model, and can decrease the total travel time greatly, which can be applied for urban traffic management. Personalized traffic guidance is the effective solution to traffic congestion in the futureKEYWORDS: Route choicereinforcement learninggeneralized travel timeindifference thresholdcompulsive preference AcknowledgmentsThis work was supported by the National Key Research and Development Program (2019YFB1600500); Science Program of Shaanxi Province (2021JQ-276).Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementNo data, models, or code were generated or used during the study.Additional informationFundingThe work was supported by the Science program of Shaanxi Province [2021JQ-276].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咕噜咕噜完成签到,获得积分10
刚刚
SciGPT应助guajiguaji采纳,获得10
1秒前
852应助深情未来采纳,获得10
2秒前
咕噜咕噜发布了新的文献求助20
3秒前
酷波er应助卓越采纳,获得10
4秒前
科研通AI2S应助饱满绮玉W采纳,获得10
4秒前
5秒前
淡然的曼岚完成签到,获得积分20
7秒前
博弈春秋应助缺粥采纳,获得50
7秒前
繁荣的莫言完成签到 ,获得积分10
9秒前
小黑驴完成签到 ,获得积分10
9秒前
大雄完成签到,获得积分20
10秒前
舒心的完成签到,获得积分10
11秒前
3s发布了新的文献求助10
11秒前
研友_VZG7GZ应助gank采纳,获得10
11秒前
我是老大应助guajiguaji采纳,获得10
13秒前
西瓜完成签到 ,获得积分10
14秒前
xiaojcom应助朴实的煎蛋采纳,获得20
14秒前
15秒前
暴躁的马里奥完成签到,获得积分10
15秒前
GEOPYJ完成签到,获得积分20
16秒前
17秒前
22发布了新的文献求助10
17秒前
toxin37完成签到,获得积分10
20秒前
桐桐应助manstar采纳,获得10
21秒前
21秒前
调研昵称发布了新的文献求助10
22秒前
wangzai111发布了新的文献求助10
22秒前
22秒前
阿网发布了新的文献求助10
23秒前
toxin37发布了新的文献求助30
24秒前
风中作画完成签到 ,获得积分20
24秒前
SciGPT应助guajiguaji采纳,获得10
24秒前
26秒前
26秒前
26秒前
27秒前
丘比特应助adoretheall采纳,获得10
28秒前
29秒前
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919