Reinforcement learning of route choice considering traveler’s preference

偏爱 强化学习 偏好学习 计算机科学 钢筋 旅游行为 增强学习 过程(计算) 运筹学 人工智能 微观经济学 工程类 经济 心理学 社会心理学 操作系统
作者
Xueqin Long,Jianxu Mao,Zhongbao Qiao,Peng Li,Wei He
出处
期刊:Transportation Letters: The International Journal of Transportation Research [Taylor & Francis]
卷期号:: 1-14 被引量:3
标识
DOI:10.1080/19427867.2023.2231689
摘要

ABSTRACTABSTRACTTravelers always perform some preference during the decision-making process. The preference will affect the decision results and can be improved by continuously learning. In order to understand the influence of individual preference on travel behavior choice , two individual preferences, including indifference preference and compulsive preference are considered in the paper. Two updating mechanisms of compulsive preference are proposed to obtain the choosing probability of all alternatives. Reinforcement learning models are established integrating the gain stimulating and loss stimulating considering expected utility. Nguyen Dupuis network is adopted for numerical simulation to study the updating process. Simulation results denote that the equilibrium state is much more efficient when preference learning mechanism is considered comparing with the traditional stochastic user equilibrium model, and can decrease the total travel time greatly, which can be applied for urban traffic management. Personalized traffic guidance is the effective solution to traffic congestion in the futureKEYWORDS: Route choicereinforcement learninggeneralized travel timeindifference thresholdcompulsive preference AcknowledgmentsThis work was supported by the National Key Research and Development Program (2019YFB1600500); Science Program of Shaanxi Province (2021JQ-276).Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementNo data, models, or code were generated or used during the study.Additional informationFundingThe work was supported by the Science program of Shaanxi Province [2021JQ-276].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaaa发布了新的文献求助10
刚刚
1秒前
倩倩芊芊完成签到,获得积分10
1秒前
Arui完成签到,获得积分10
2秒前
2秒前
尊敬的夏槐完成签到,获得积分10
4秒前
5秒前
6秒前
Arui发布了新的文献求助20
6秒前
7秒前
7秒前
sopha完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Lian发布了新的文献求助10
8秒前
wanci应助tyx采纳,获得10
8秒前
愉快的秋柔完成签到,获得积分10
9秒前
CipherSage应助任性的忆南采纳,获得10
9秒前
11秒前
11秒前
天天向上发布了新的文献求助10
12秒前
12秒前
ll应助JJQ采纳,获得10
12秒前
15秒前
FashionBoy应助aaaaaa采纳,获得10
15秒前
16秒前
Bao发布了新的文献求助10
17秒前
17秒前
17秒前
王王完成签到 ,获得积分10
18秒前
fuje发布了新的文献求助30
18秒前
小猪猪饲养员完成签到,获得积分10
18秒前
18秒前
教生物的杨教授完成签到,获得积分10
19秒前
19秒前
和平发展完成签到,获得积分10
19秒前
Cameron完成签到,获得积分0
20秒前
烟花应助张老师采纳,获得10
20秒前
nemo完成签到,获得积分20
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421