Prostate segmentation accuracy using synthetic MRI for high-dose-rate prostate brachytherapy treatment planning

前列腺 分割 计算机科学 豪斯多夫距离 前列腺近距离放射治疗 人工智能 近距离放射治疗 相似性(几何) 磁共振成像 医学 核医学 模式识别(心理学) 放射科 放射治疗 图像(数学) 癌症 内科学
作者
Hyejoo Kang,Alexander R. Podgorsak,Bhanu Prasad Venkatesulu,Anjali L. Saripalli,Brian Chou,Abhishek A. Solanki,Matthew M. Harkenrider,Steven M. Shea,John C. Roeske,Mohammed Abuhamad
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (15): 155017-155017 被引量:1
标识
DOI:10.1088/1361-6560/ace674
摘要

Objective. Both computed tomography (CT) and magnetic resonance imaging (MRI) images are acquired for high-dose-rate (HDR) prostate brachytherapy patients at our institution. CT is used to identify catheters and MRI is used to segment the prostate. To address scenarios of limited MRI access, we developed a novel generative adversarial network (GAN) to generate synthetic MRI (sMRI) from CT with sufficient soft-tissue contrast to provide accurate prostate segmentation without MRI (rMRI).Approach. Our hybrid GAN, PxCGAN, was trained utilizing 58 paired CT-MRI datasets from our HDR prostate patients. Using 20 independent CT-MRI datasets, the image quality of sMRI was tested using mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). These metrics were compared with the metrics of sMRI generated using Pix2Pix and CycleGAN. The accuracy of prostate segmentation on sMRI was evaluated using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and mean surface distance (MSD) on the prostate delineated by three radiation oncologists (ROs) on sMRI versus rMRI. To estimate inter-observer variability (IOV), these metrics between prostate contours delineated by each RO on rMRI and the prostate delineated by treating RO on rMRI (gold standard) were calculated.Main results. Qualitatively, sMRI images show enhanced soft-tissue contrast at the prostate boundary compared with CT scans. For MAE and MSE, PxCGAN and CycleGAN have similar results, while the MAE of PxCGAN is smaller than that of Pix2Pix. PSNR and SSIM of PxCGAN are significantly higher than Pix2Pix and CycleGAN (p < 0.01). The DSC for sMRI versus rMRI is within the range of the IOV, while the HD for sMRI versus rMRI is smaller than the HD for the IOV for all ROs (p ≤ 0.03).Significance. PxCGAN generates sMRI images from treatment-planning CT scans that depict enhanced soft-tissue contrast at the prostate boundary. The accuracy of prostate segmentation on sMRI compared to rMRI is within the segmentation variation on rMRI between different ROs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
葉鳳怡完成签到 ,获得积分10
刚刚
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
4秒前
orangel完成签到,获得积分10
5秒前
8秒前
小浣熊爱甜甜圈完成签到 ,获得积分10
8秒前
llllzzh完成签到 ,获得积分10
10秒前
孤独念柏完成签到,获得积分10
10秒前
酷波er应助seven采纳,获得10
11秒前
充电宝应助勤奋的草丛采纳,获得10
11秒前
11秒前
LXL完成签到,获得积分10
12秒前
chocolate发布了新的文献求助10
12秒前
12秒前
边婧韬完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
Angora完成签到,获得积分10
15秒前
眉姐姐的藕粉桂花糖糕完成签到,获得积分10
16秒前
边婧韬发布了新的文献求助10
18秒前
Dvus完成签到,获得积分20
18秒前
CipherSage应助一只椰青采纳,获得80
18秒前
诸葛藏藏完成签到 ,获得积分10
18秒前
桃子完成签到 ,获得积分10
19秒前
Eden发布了新的文献求助10
19秒前
清脆的水蜜桃完成签到 ,获得积分10
19秒前
林子昂完成签到,获得积分10
20秒前
Ycz完成签到 ,获得积分10
20秒前
hyr完成签到 ,获得积分10
21秒前
Jasper应助三明治采纳,获得10
22秒前
科研通AI6应助欣喜的又夏采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4912095
求助须知:如何正确求助?哪些是违规求助? 4187304
关于积分的说明 13003664
捐赠科研通 3955373
什么是DOI,文献DOI怎么找? 2168696
邀请新用户注册赠送积分活动 1187211
关于科研通互助平台的介绍 1094459