加氢脱硫
材料科学
催化作用
硫化
介孔材料
化学工程
石油化工
纳米技术
冶金
有机化学
硫黄
化学
工程类
作者
Jixing Liu,Jingyi Zhu,Jie Zhu,Jundong Xu,Hui Liu,Mingqing Hua,Huifang Cheng,Huaming Li,Jian Liu,Wenshuai Zhu,Hongbing Ji
标识
DOI:10.1021/acsami.3c05620
摘要
The development of a competitive-cost and high-efficiency NiMo/Al2O3 hydrodesulfurization (HDS) catalyst remains challenging in the field of petrochemical industry. Herein, a highly efficient NiMo/Al2O3 monolithic HDS catalyst was elaborately designed and successfully fabricated via a one-pot three-dimensional (3D) printing strategy, and its HDS activity was examined for 4,6-dimethyldibenzothiophene conversion. The results unveil that the NiMo/Al2O3 monolithic catalyst prepared by the 3D printing strategy (3D-NiMo/Al2O3) exhibits hierarchical structure due to the combustion of hydroxymethyl cellulose serving as adhesive, which endows the weaker metal-support-interaction between Mo oxides and Al2O3, remarkably promoting sulfidation of both Mo and Ni species and the formation of "Type II" NiMoS active phase, thereby reducing the apparent activation energy (Ea = 109.2 kJ·mol-1) and increasing the catalytic activity (TOF = 4.0 h-1) and thereafter dramatically boosting the HDS performance of 3D-NiMo/Al2O3 compared with that of NiMo/Al2O3 (Ea = 150.6 kJ·mol-1 and TOF = 2.1 h-1) counterpart synthesized by conventional method with P123 serving as the mesoporous template. Therefore, this study offers a facile and straightforward strategy to fabricate an efficient HDS catalyst with hierarchical structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI