亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

One-dimensional structure reparameterized convolutional neural network for two-phase image reconstruction based on ERT

计算机科学 卷积神经网络 人工智能 特征(语言学) 算法 块(置换群论) 模式识别(心理学) 卷积(计算机科学) 人工神经网络 像素 特征提取 相(物质) 深度学习 数学 几何学 物理 哲学 语言学 量子力学
作者
Yan Chao,Guoyuan Zhang,Yu Chen,Sen Huang,Yangyang Zhao,Junqian Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105402-105402 被引量:3
标识
DOI:10.1088/1361-6501/ace2df
摘要

Abstract Electrical resistance tomography (ERT) can be applied to two-phase flow pattern identification which is a key research direction for improving the operational safety of different industrial equipment systems with complex flow fields. Aiming at the existing problem that the traditional algorithm for defining flow patterns cannot accurately establish the mapping relationship between the measured voltage from ERT system and the two-phase flow conductivity distribution, a novel one-dimensional structure reparameterized convolutional neural network (1D-SRPCNN) algorithm for two-phase flow pattern image reconstruction based on ERT is proposed. First, finite element method and deep learning software framework are used to build dataset and train the neural network model respectively. Second, a deep residual network (ResNet) is used as the main network structure in the algorithm, and the one-dimensional multiscale feature extraction block (1DMSFE-Block) is improved by structural reparameterization. Then, multiscale convolution is introduced to 1DMSFE-Block for extracting features of different receptive field sizes and performing linear fusion, and the predicted two-phase flow conductivity pixel vector is obtained by the feature map passing with three fully connected layers. The results show that 1D-SRPCNN has high reconstruction performance, the average relative image error is 5.15%, the average correlation coefficient is 97.2%, and it has high anti-noise performance and generalization performance. Different experimental data also show that 1D-SRPCNN has high image reconstruction accuracy and efficiency. The research will provide important theoretical support for accurately identifying two-phase flow patterns in different fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Omni采纳,获得10
4秒前
1分钟前
Sisyphus发布了新的文献求助10
1分钟前
打打应助RKK采纳,获得10
1分钟前
1分钟前
1分钟前
balko发布了新的文献求助10
1分钟前
RKK发布了新的文献求助10
1分钟前
Sisyphus完成签到,获得积分10
1分钟前
1分钟前
1分钟前
无私映容发布了新的文献求助10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
贝儿完成签到 ,获得积分10
2分钟前
郜连虎发布了新的文献求助10
2分钟前
脑洞疼应助qinsu采纳,获得10
3分钟前
郜连虎完成签到,获得积分10
3分钟前
3分钟前
qinsu发布了新的文献求助10
3分钟前
3分钟前
π1发布了新的文献求助10
3分钟前
qinsu完成签到,获得积分20
4分钟前
4分钟前
英俊的铭应助π1采纳,获得10
4分钟前
经冰夏完成签到 ,获得积分10
5分钟前
JamesPei应助快快快采纳,获得10
5分钟前
5分钟前
5分钟前
爆米花应助科研通管家采纳,获得10
6分钟前
持卿应助小小六采纳,获得10
6分钟前
快快快完成签到,获得积分10
6分钟前
橘橘橘子皮完成签到 ,获得积分10
6分钟前
7分钟前
月军完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
jyy发布了新的文献求助10
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526536
求助须知:如何正确求助?哪些是违规求助? 3106982
关于积分的说明 9281992
捐赠科研通 2804577
什么是DOI,文献DOI怎么找? 1539504
邀请新用户注册赠送积分活动 716580
科研通“疑难数据库(出版商)”最低求助积分说明 709579