材料科学
纳米光刻
电子束光刻
平版印刷术
次级电子
抵抗
纳米技术
下一代光刻
纳米结构
光电子学
光刻胶
X射线光刻
电子
制作
医学
替代医学
物理
病理
图层(电子)
量子力学
作者
Qianqian Wang,Yuting Zhou,Xiaolin Wang,Hongqiang Gao,Zhiwen Shu,Ziyu Hu,Peipei Tao,Yasin Ekinci,Michaela Vockenhuber,Yiqin Chen,Huigao Duan,Hong Xu,Xiangming He
标识
DOI:10.1016/j.mattod.2023.06.005
摘要
Nanopatterning is a well-established approach to fabricating nanostructures in electronics and optics, and exploiting patterning strategy to achieve smaller feature sizes and higher precision is urgently and constantly pursued. State-of-the-art extreme ultraviolet lithography and electron beam lithography have proven to produce smaller sizes. However, for such energetic radiation-based approaches, the serious diffusion behavior of the radiolytic low-energy secondary electrons will result in unpredictable defects in the unexposed matrix, limiting the ultimate resolution and hindering its potential in sub-10 nm patterning. Herein, we report significant progress in high-resolution patterning via suppressing of residues caused by secondary electron diffusion, and 10 nm line-space nanostructures are achieved by utilizing a free radical quencher in patterning a highly sensitive zirconium-containing photoresist. Lithography evaluation combined with theoretical calculation reveals this novel radical quencher approach can effectively suppress undesired electronic excitation and ionization reactions, thereby significantly improving resolution and edge roughness. By inhibiting secondary electron-induced active species, this quenching mechanism is found to increase the onset dose and effectively narrow the energy deposition; thus improving the patterning contrast and facilitating the acquisition of straight lines with sharp edges. This work provides a new perspective on active species diffusion control for higher precision nanoscale fabrication.
科研通智能强力驱动
Strongly Powered by AbleSci AI