Application of artificial intelligence: risk perception and trust in the work context with different impact levels and task types

任务(项目管理) 背景(考古学) 感知 计算机科学 应用心理学 心理学 人工智能 大数据 认知心理学 数据挖掘 工程类 生物 古生物学 神经科学 系统工程
作者
U. Klein,Jana Depping,Laura Wohlfahrt,Pantaleon Fassbender
出处
期刊:AI & society [Springer Nature]
卷期号:39 (5): 2445-2456 被引量:7
标识
DOI:10.1007/s00146-023-01699-w
摘要

Abstract Following the studies of Araujo et al. (AI Soc 35:611–623, 2020) and Lee (Big Data Soc 5:1–16, 2018), this empirical study uses two scenario-based online experiments. The sample consists of 221 subjects from Germany, differing in both age and gender. The original studies are not replicated one-to-one. New scenarios are constructed as realistically as possible and focused on everyday work situations. They are based on the AI acceptance model of Scheuer (Grundlagen intelligenter KI-Assistenten und deren vertrauensvolle Nutzung. Springer, Wiesbaden, 2020) and are extended by individual descriptive elements of AI systems in comparison to the original studies. The first online experiment examines decisions made by artificial intelligence with varying degrees of impact. In the high-impact scenario, applicants are automatically selected for a job and immediately received an employment contract. In the low-impact scenario, three applicants are automatically invited for another interview. In addition, the relationship between age and risk perception is investigated. The second online experiment tests subjects’ perceived trust in decisions made by artificial intelligence, either semi-automatically through the assistance of human experts or fully automatically in comparison. Two task types are distinguished. The task type that requires “human skills”—represented as a performance evaluation situation—and the task type that requires “mechanical skills”—represented as a work distribution situation. In addition, the extent of negative emotions in automated decisions is investigated. The results are related to the findings of Araujo et al. (AI Soc 35:611–623, 2020) and Lee (Big Data Soc 5:1–16, 2018). Implications for further research activities and practical relevance are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助鱼丸采纳,获得10
1秒前
1秒前
俊秀的念烟完成签到,获得积分10
3秒前
Nat发布了新的文献求助10
3秒前
CipherSage应助可可采纳,获得10
3秒前
5秒前
5秒前
薛变霞完成签到,获得积分10
5秒前
歪歪发布了新的文献求助10
5秒前
超级快乐的小朋友完成签到,获得积分10
6秒前
红毛兔完成签到 ,获得积分10
6秒前
陈博士发布了新的文献求助10
6秒前
bkagyin应助vv采纳,获得10
7秒前
grisco发布了新的文献求助10
8秒前
黄俊发布了新的文献求助10
8秒前
笑点低绿竹关注了科研通微信公众号
8秒前
8秒前
Ava应助咕噜噜采纳,获得10
9秒前
9秒前
9秒前
11秒前
蓝风铃发布了新的文献求助10
12秒前
Frank发布了新的文献求助10
13秒前
14秒前
tiger发布了新的文献求助10
14秒前
万能图书馆应助whichwhy采纳,获得10
15秒前
充电宝应助枝枝采纳,获得10
15秒前
15秒前
深情安青应助mariawang采纳,获得10
16秒前
今后应助一一采纳,获得10
16秒前
云云云完成签到,获得积分10
16秒前
英姑应助grisco采纳,获得10
16秒前
可爱的函函应助hilda采纳,获得10
16秒前
xliiii完成签到,获得积分10
17秒前
18秒前
18秒前
李健的小迷弟应助Frank采纳,获得10
20秒前
20秒前
闫圆圆发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544116
求助须知:如何正确求助?哪些是违规求助? 3121321
关于积分的说明 9346532
捐赠科研通 2819334
什么是DOI,文献DOI怎么找? 1550167
邀请新用户注册赠送积分活动 722396
科研通“疑难数据库(出版商)”最低求助积分说明 713227