GraphSAGE-Based Dynamic Spatial–Temporal Graph Convolutional Network for Traffic Prediction

计算机科学 依赖关系(UML) 图形 深度学习 卷积(计算机科学) 时态数据库 人工智能 空间分析 空间相关性 数据挖掘 模式识别(心理学) 理论计算机科学 人工神经网络 遥感 地理 电信
作者
Tao Liu,Aimin Jiang,Jia Zhou,Min Li,Hon Keung Kwan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 11210-11224 被引量:16
标识
DOI:10.1109/tits.2023.3279929
摘要

Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy. Recently, many deep learning models have been proposed for spatial-temporal dependency modeling. While numerous deep learning models have been developed for spatial-temporal dependency modeling, most rely on different types of convolutions to extract spatial and temporal correlations separately. To address this limitation, we propose a novel deep learning framework for traffic prediction called GraphSAGE-based Dynamic Spatial-Temporal Graph Convolutional Network (DST-GraphSAGE), which can capture dynamic spatial and temporal dependencies simultaneously. Our model utilizes a spatial-temporal GraphSAGE module to extract localized spatial-temporal correlations from past observations of a node’s spatial neighbors. Meanwhile, the attention mechanism is incorporated to dynamically learn weights between traffic nodes based on graph features. Additionally, to capture long-term trends in traffic data, we employ dilated causal convolution as the temporal convolution layer. A series of numerical experiments are conducted on five real-world datasets, which demonstrates the effectiveness of our model for spatial-temporal dependency modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花开hhhhhhh完成签到,获得积分10
刚刚
欢欢完成签到,获得积分10
1秒前
Joshua发布了新的文献求助10
1秒前
可爱的函函应助Tira采纳,获得10
1秒前
lqq的一家之主完成签到,获得积分10
2秒前
陈陈完成签到 ,获得积分10
2秒前
么系么系完成签到,获得积分10
2秒前
3秒前
坤坤完成签到,获得积分10
3秒前
东风第一枝完成签到,获得积分20
3秒前
欢欢发布了新的文献求助10
3秒前
Jasper应助易安采纳,获得10
5秒前
5秒前
一一发布了新的文献求助10
5秒前
6秒前
Muller完成签到,获得积分10
6秒前
经法发布了新的文献求助10
7秒前
谦让的忘幽完成签到,获得积分20
7秒前
和谐小南完成签到,获得积分10
7秒前
小jiojio的猪完成签到,获得积分10
7秒前
小匹夫完成签到,获得积分10
8秒前
赤墨完成签到,获得积分10
8秒前
8秒前
9秒前
狮子沟核聚变骡子完成签到 ,获得积分10
9秒前
9秒前
传奇3应助乔治韦斯莱采纳,获得30
9秒前
9秒前
10秒前
于某人完成签到,获得积分10
10秒前
小陈要发SCI完成签到 ,获得积分10
10秒前
cdercder应助尹天扬采纳,获得20
10秒前
称心铭完成签到 ,获得积分10
11秒前
cjh258819完成签到,获得积分10
12秒前
12秒前
xl完成签到 ,获得积分10
13秒前
13秒前
13秒前
liu完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678