Joint-optimized feature selection and classifier hyperparameters by salp swarm algorithm in piano score difficulty measurement problem

超参数 计算机科学 分类器(UML) 人工智能 超参数优化 特征选择 粒子群优化 最优化问题 模式识别(心理学) 机器学习 特征向量 算法 支持向量机
作者
Hui Yan,Qiang Li,Ming‐Lang Tseng,Xin Guan
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:144: 110464-110464 被引量:1
标识
DOI:10.1016/j.asoc.2023.110464
摘要

This study proposes the semantic-explicit features that characterize difficulty, and jointly optimizes feature selection and classifier hyperparameters by the salp swarm algorithm (SSA) to deal with the corresponding mixed-integer programming problem with constructing large-scale piano score difficulty level datasets. The difficulty level of piano scores is essential for piano learners to choose the appropriate piece, especially for beginners and amateurs. However, the previous studies lack an open-access baseline dataset and sufficient difficulty-related features, as well as the separate optimization of and feature and model hyperparameter. To address such problems, this study constructs large-scale difficulty-level datasets, proposes novel difficulty-related features, and jointly optimizes feature selection and classifier hyperparameters due to the coupled effect of feature selection and model optimization. The search space of the joint optimization is complex due to the strong mutual constraint relationship of difficulty levels in the piano-score difficulty measurement (PSDM) problem. SSA is adapted to the joint optimization scheme of the PSDM problem with the advantages of only one main controlling parameter and less computation complexity involving the gradual SSA movement approach to balance global exploration and local exploitation in an unknown and complex search space. The joint-optimization mechanism by SSA achieves an overall accuracy of 78.80% and 60.68% on two datasets of 677 and 2040 piano pieces with difficulty levels of four and nine, respectively. The results of recognition accuracy obviously validate the distinguished performance of our joint-optimization scheme compared to the successive optimization and joint optimization by other seven optimization algorithms in terms of the PSDM problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助yu采纳,获得10
刚刚
M张完成签到,获得积分10
1秒前
清圆527完成签到,获得积分10
1秒前
xiaoweiba发布了新的文献求助10
2秒前
王嘉尔完成签到,获得积分10
2秒前
很烦起名字完成签到,获得积分20
2秒前
潇洒的如松完成签到,获得积分10
3秒前
传奇3应助李大橘采纳,获得10
3秒前
姜姜完成签到,获得积分10
3秒前
礼鱼鲤遇完成签到 ,获得积分10
4秒前
hy完成签到,获得积分10
4秒前
4秒前
坚定如南完成签到 ,获得积分10
4秒前
5秒前
热心的巧克力完成签到,获得积分10
5秒前
5秒前
浙大特聘教授完成签到 ,获得积分10
5秒前
友好聋五发布了新的文献求助10
5秒前
门板发布了新的文献求助10
6秒前
6秒前
失眠的剑完成签到,获得积分10
6秒前
蟑螂恶霸完成签到,获得积分10
7秒前
右旋王小二完成签到,获得积分10
7秒前
7秒前
7秒前
帅气八哥发布了新的文献求助10
8秒前
8秒前
8秒前
qweerrtt完成签到,获得积分10
8秒前
dcx完成签到,获得积分10
9秒前
9秒前
9秒前
西西完成签到,获得积分10
9秒前
lllsy发布了新的文献求助20
9秒前
辛勤代梅发布了新的文献求助10
9秒前
Akim应助cclday采纳,获得10
9秒前
Scidog完成签到,获得积分0
10秒前
江浩发布了新的文献求助10
10秒前
10秒前
一枚研究僧完成签到,获得积分0
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568749
求助须知:如何正确求助?哪些是违规求助? 4653462
关于积分的说明 14705509
捐赠科研通 4595160
什么是DOI,文献DOI怎么找? 2521570
邀请新用户注册赠送积分活动 1493069
关于科研通互助平台的介绍 1463812