Joint-optimized feature selection and classifier hyperparameters by salp swarm algorithm in piano score difficulty measurement problem

超参数 计算机科学 分类器(UML) 人工智能 超参数优化 特征选择 粒子群优化 最优化问题 模式识别(心理学) 机器学习 特征向量 算法 支持向量机
作者
Hui Yan,Qiang Li,Ming‐Lang Tseng,Xin Guan
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:144: 110464-110464 被引量:1
标识
DOI:10.1016/j.asoc.2023.110464
摘要

This study proposes the semantic-explicit features that characterize difficulty, and jointly optimizes feature selection and classifier hyperparameters by the salp swarm algorithm (SSA) to deal with the corresponding mixed-integer programming problem with constructing large-scale piano score difficulty level datasets. The difficulty level of piano scores is essential for piano learners to choose the appropriate piece, especially for beginners and amateurs. However, the previous studies lack an open-access baseline dataset and sufficient difficulty-related features, as well as the separate optimization of and feature and model hyperparameter. To address such problems, this study constructs large-scale difficulty-level datasets, proposes novel difficulty-related features, and jointly optimizes feature selection and classifier hyperparameters due to the coupled effect of feature selection and model optimization. The search space of the joint optimization is complex due to the strong mutual constraint relationship of difficulty levels in the piano-score difficulty measurement (PSDM) problem. SSA is adapted to the joint optimization scheme of the PSDM problem with the advantages of only one main controlling parameter and less computation complexity involving the gradual SSA movement approach to balance global exploration and local exploitation in an unknown and complex search space. The joint-optimization mechanism by SSA achieves an overall accuracy of 78.80% and 60.68% on two datasets of 677 and 2040 piano pieces with difficulty levels of four and nine, respectively. The results of recognition accuracy obviously validate the distinguished performance of our joint-optimization scheme compared to the successive optimization and joint optimization by other seven optimization algorithms in terms of the PSDM problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮熙发布了新的文献求助10
刚刚
星辰大海应助Wang采纳,获得10
刚刚
Yelanjiao完成签到,获得积分10
刚刚
1秒前
aslink发布了新的文献求助10
1秒前
111发布了新的文献求助10
1秒前
知性的成关注了科研通微信公众号
2秒前
2秒前
冽飏完成签到,获得积分20
2秒前
斯文冷亦发布了新的文献求助10
3秒前
1177完成签到,获得积分20
3秒前
yang完成签到 ,获得积分10
3秒前
3秒前
刘钱美子发布了新的文献求助10
5秒前
x1发布了新的文献求助10
6秒前
无糖的问题完成签到,获得积分20
6秒前
jjy完成签到 ,获得积分10
6秒前
bkagyin应助余佘采纳,获得30
6秒前
7秒前
毕业完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
不吃香菇完成签到,获得积分10
8秒前
星辰大海应助仲夏采纳,获得10
8秒前
Bronx发布了新的文献求助30
9秒前
9秒前
TomTonyy完成签到,获得积分10
10秒前
CodeCraft应助DZ采纳,获得10
11秒前
岁月神偷发布了新的文献求助10
11秒前
小蘑菇应助斯文冷亦采纳,获得30
11秒前
11秒前
11秒前
嘻嘻完成签到,获得积分10
11秒前
爆米花应助小赵采纳,获得10
11秒前
轻松盼雁发布了新的文献求助10
12秒前
包容昊强完成签到,获得积分10
12秒前
12秒前
四氟硼酸盐完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559942
求助须知:如何正确求助?哪些是违规求助? 3986277
关于积分的说明 12342143
捐赠科研通 3656944
什么是DOI,文献DOI怎么找? 2014643
邀请新用户注册赠送积分活动 1049418
科研通“疑难数据库(出版商)”最低求助积分说明 937738