Spam review detection with Metapath-aggregated graph convolution network

计算机科学 图形 机器学习 数据科学 特征学习 垃圾邮件 特征选择 产品(数学) 水准点(测量) 维数之咒 数据挖掘 人工智能 理论计算机科学 万维网 互联网 数学 大地测量学 地理 几何学
作者
P. Jayashree,K. Laila,A. Amuthan
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (2): 3005-3023 被引量:1
标识
DOI:10.3233/jifs-223136
摘要

The large flux of online products in today’s world makes business reviews a valuable source for consumers for making sound decisions before making online purchases. Reviews are useful for readers in learning more about the product and gauge its quality. Fake reviews and reviewers form the bulk of the review corpus, making review spamming an open research challenge. These spam reviews require detection to nullify their contribution to product recommendations. In the past, researchers and communities have taken spam detection problems as a matter of serious concern. Yet, for all that, there is space for the performance of exploration on large-scale complex datasets. The work contributes towards robust feature selection with derived features that provide more details on malicious reviews and spammers. Ensemble and other standard machine learning techniques are trained and evaluated over optimal feature sets. In addition, the Metapath-based Graph Convolution Network (M-GCN) framework is proposed, which is an implicit knowledge extraction method to automatically capture the complex semantic meaning of reviews from the heterogeneous network. It makes analysis of triplet (users, reviews, and products) relationships in e-commerce sites through examination of Top-n feature sets in a mutually reinforcing manner. The proposed model is demonstrated on Yelp and Amazon benchmark datasets for evaluation of efficacy and it is shown outperforming state-of-the-art techniques with and without graph-utilization, providing an accuracy of 96% in the prediction task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
六初完成签到 ,获得积分10
1秒前
卓霞完成签到,获得积分10
3秒前
3秒前
3秒前
顾矜应助晶晶采纳,获得10
4秒前
12345发布了新的文献求助30
5秒前
卓霞发布了新的文献求助10
6秒前
Egoist完成签到,获得积分10
6秒前
脑洞疼应助xumengsuo采纳,获得10
7秒前
隐形曼青应助九川采纳,获得30
7秒前
李健的小迷弟应助湘北采纳,获得10
7秒前
研友-L.Y发布了新的文献求助10
10秒前
10秒前
SciGPT应助Haisne采纳,获得10
10秒前
星辰大海应助左左采纳,获得10
12秒前
mumu完成签到 ,获得积分10
12秒前
13秒前
FashionBoy应助诚心青曼采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
爆米花应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
爆米花应助Sg采纳,获得10
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268165
求助须知:如何正确求助?哪些是违规求助? 2907679
关于积分的说明 8342753
捐赠科研通 2578067
什么是DOI,文献DOI怎么找? 1401654
科研通“疑难数据库(出版商)”最低求助积分说明 655107
邀请新用户注册赠送积分活动 634186