清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CT Imaging With Machine Learning for Predicting Progression to COPD in Individuals at Risk

医学 慢性阻塞性肺病 肺活量测定 接收机工作特性 队列 人口 机器学习 物理疗法 内科学 计算机科学 环境卫生 哮喘
作者
Kalysta Makimoto,James C. Hogg,Jean Bourbeau,Wan C. Tan,Miranda Kirby
出处
期刊:Chest [Elsevier BV]
卷期号:164 (5): 1139-1149 被引量:22
标识
DOI:10.1016/j.chest.2023.06.008
摘要

Background Identifying individuals at risk of progressing to COPD may allow for initiation of treatment to potentially slow the progression of the disease or the selection of subgroups for discovery of novel interventions. Research Question Does the addition of CT imaging features, texture-based radiomic features, and established quantitative CT scan to conventional risk factors improve the performance for predicting progression to COPD in individuals who smoke with machine learning? Study Design and Methods Participants at risk (individuals who currently or formerly smoked, without COPD) from the Canadian Cohort Obstructive Lung Disease (CanCOLD) population-based study underwent CT imaging at baseline and spirometry at baseline and follow-up. Various combinations of CT scan features, texture-based CT scan radiomics (n = 95), and established quantitative CT scan (n = 8), as well as demographic (n = 5) and spirometry (n = 3) measurements, with machine learning algorithms were evaluated to predict progression to COPD. Performance metrics included the area under the receiver operating characteristic curve (AUC) to evaluate the models. DeLong test was used to compare the performance of the models. Results Among the 294 at-risk participants who were evaluated (mean age, 65.6 ± 9.2 years; 42% female; mean pack-years, 17.9 ± 18.7), 52 participants (23.7%) in the training data set and 17 participants (23.0%) in the testing data set progressed to spirometric COPD at follow-up (2.5 ± 0.9 years from baseline). Compared with machine learning models with demographics alone (AUC, 0.649), the addition of CT imaging features to demographics (AUC, 0.730; P < .05) or CT imaging features and spirometry to demographics (AUC, 0.877; P < .05) significantly improved the performance for predicting progression to COPD. Interpretation Heterogeneous structural changes occur in the lungs of individuals at risk that can be quantified using CT imaging features, and evaluation of these features together with conventional risk factors improves performance for predicting progression to COPD. Identifying individuals at risk of progressing to COPD may allow for initiation of treatment to potentially slow the progression of the disease or the selection of subgroups for discovery of novel interventions. Does the addition of CT imaging features, texture-based radiomic features, and established quantitative CT scan to conventional risk factors improve the performance for predicting progression to COPD in individuals who smoke with machine learning? Participants at risk (individuals who currently or formerly smoked, without COPD) from the Canadian Cohort Obstructive Lung Disease (CanCOLD) population-based study underwent CT imaging at baseline and spirometry at baseline and follow-up. Various combinations of CT scan features, texture-based CT scan radiomics (n = 95), and established quantitative CT scan (n = 8), as well as demographic (n = 5) and spirometry (n = 3) measurements, with machine learning algorithms were evaluated to predict progression to COPD. Performance metrics included the area under the receiver operating characteristic curve (AUC) to evaluate the models. DeLong test was used to compare the performance of the models. Among the 294 at-risk participants who were evaluated (mean age, 65.6 ± 9.2 years; 42% female; mean pack-years, 17.9 ± 18.7), 52 participants (23.7%) in the training data set and 17 participants (23.0%) in the testing data set progressed to spirometric COPD at follow-up (2.5 ± 0.9 years from baseline). Compared with machine learning models with demographics alone (AUC, 0.649), the addition of CT imaging features to demographics (AUC, 0.730; P < .05) or CT imaging features and spirometry to demographics (AUC, 0.877; P < .05) significantly improved the performance for predicting progression to COPD. Heterogeneous structural changes occur in the lungs of individuals at risk that can be quantified using CT imaging features, and evaluation of these features together with conventional risk factors improves performance for predicting progression to COPD. Seeing and Not Seeing Is Believing: Predicting COPD With Lung ImagingCHESTVol. 164Issue 5PreviewCOPD affects approximately 29 million people in the United States and is the third leading cause of death.1 Individuals with COPD experience chronic respiratory symptoms, exercise intolerance, and progression of their lung function. Identifying individuals at risk of developing COPD is crucial to prevent disease and improve patient care. Various approaches are used to assess the risk of developing COPD, including spirometry; history of smoking, symptoms, and exacerbations; and genetic factors. For instance, people who never reached peak lung function in young adulthood are at risk of developing COPD2; similarly, individuals exposed to cigarette smoking for a long term and individuals who smoke with repeated acute respiratory exacerbations may develop COPD. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助50
6秒前
花园里的蒜完成签到 ,获得积分0
28秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
33秒前
loen完成签到,获得积分10
38秒前
多亿点完成签到 ,获得积分10
1分钟前
shuang完成签到 ,获得积分10
1分钟前
Ava应助michael_suo采纳,获得10
1分钟前
1分钟前
husi发布了新的文献求助10
1分钟前
1分钟前
husi完成签到 ,获得积分20
1分钟前
在水一方应助我爱读文献采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
michael_suo发布了新的文献求助10
2分钟前
michael_suo完成签到,获得积分10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
爱吃皮囊的大馋虫完成签到 ,获得积分10
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
馆长举报i beLIeVe求助涉嫌违规
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
馆长举报小黄瓜896求助涉嫌违规
3分钟前
馆长举报kkkkk求助涉嫌违规
3分钟前
超级兵12完成签到,获得积分10
3分钟前
程小柒完成签到 ,获得积分10
3分钟前
馆长举报Yoli求助涉嫌违规
3分钟前
馆长举报欢喜的海求助涉嫌违规
4分钟前
lei029发布了新的文献求助30
4分钟前
馆长举报耶耶耶y求助涉嫌违规
4分钟前
Wenjie_Xin完成签到,获得积分10
4分钟前
馆长举报友好慕卉求助涉嫌违规
4分钟前
馆长举报墨尘求助涉嫌违规
4分钟前
lei029完成签到,获得积分10
5分钟前
5分钟前
lei029发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967