CT Imaging With Machine Learning for Predicting Progression to COPD in Individuals at Risk

医学 慢性阻塞性肺病 肺活量测定 接收机工作特性 队列 人口 机器学习 物理疗法 内科学 计算机科学 环境卫生 哮喘
作者
Kalysta Makimoto,James C. Hogg,Jean Bourbeau,Wan C. Tan,Miranda Kirby
出处
期刊:Chest [Elsevier]
卷期号:164 (5): 1139-1149 被引量:12
标识
DOI:10.1016/j.chest.2023.06.008
摘要

Background Identifying individuals at risk of progressing to COPD may allow for initiation of treatment to potentially slow the progression of the disease or the selection of subgroups for discovery of novel interventions. Research Question Does the addition of CT imaging features, texture-based radiomic features, and established quantitative CT scan to conventional risk factors improve the performance for predicting progression to COPD in individuals who smoke with machine learning? Study Design and Methods Participants at risk (individuals who currently or formerly smoked, without COPD) from the Canadian Cohort Obstructive Lung Disease (CanCOLD) population-based study underwent CT imaging at baseline and spirometry at baseline and follow-up. Various combinations of CT scan features, texture-based CT scan radiomics (n = 95), and established quantitative CT scan (n = 8), as well as demographic (n = 5) and spirometry (n = 3) measurements, with machine learning algorithms were evaluated to predict progression to COPD. Performance metrics included the area under the receiver operating characteristic curve (AUC) to evaluate the models. DeLong test was used to compare the performance of the models. Results Among the 294 at-risk participants who were evaluated (mean age, 65.6 ± 9.2 years; 42% female; mean pack-years, 17.9 ± 18.7), 52 participants (23.7%) in the training data set and 17 participants (23.0%) in the testing data set progressed to spirometric COPD at follow-up (2.5 ± 0.9 years from baseline). Compared with machine learning models with demographics alone (AUC, 0.649), the addition of CT imaging features to demographics (AUC, 0.730; P < .05) or CT imaging features and spirometry to demographics (AUC, 0.877; P < .05) significantly improved the performance for predicting progression to COPD. Interpretation Heterogeneous structural changes occur in the lungs of individuals at risk that can be quantified using CT imaging features, and evaluation of these features together with conventional risk factors improves performance for predicting progression to COPD. Identifying individuals at risk of progressing to COPD may allow for initiation of treatment to potentially slow the progression of the disease or the selection of subgroups for discovery of novel interventions. Does the addition of CT imaging features, texture-based radiomic features, and established quantitative CT scan to conventional risk factors improve the performance for predicting progression to COPD in individuals who smoke with machine learning? Participants at risk (individuals who currently or formerly smoked, without COPD) from the Canadian Cohort Obstructive Lung Disease (CanCOLD) population-based study underwent CT imaging at baseline and spirometry at baseline and follow-up. Various combinations of CT scan features, texture-based CT scan radiomics (n = 95), and established quantitative CT scan (n = 8), as well as demographic (n = 5) and spirometry (n = 3) measurements, with machine learning algorithms were evaluated to predict progression to COPD. Performance metrics included the area under the receiver operating characteristic curve (AUC) to evaluate the models. DeLong test was used to compare the performance of the models. Among the 294 at-risk participants who were evaluated (mean age, 65.6 ± 9.2 years; 42% female; mean pack-years, 17.9 ± 18.7), 52 participants (23.7%) in the training data set and 17 participants (23.0%) in the testing data set progressed to spirometric COPD at follow-up (2.5 ± 0.9 years from baseline). Compared with machine learning models with demographics alone (AUC, 0.649), the addition of CT imaging features to demographics (AUC, 0.730; P < .05) or CT imaging features and spirometry to demographics (AUC, 0.877; P < .05) significantly improved the performance for predicting progression to COPD. Heterogeneous structural changes occur in the lungs of individuals at risk that can be quantified using CT imaging features, and evaluation of these features together with conventional risk factors improves performance for predicting progression to COPD. Seeing and Not Seeing Is Believing: Predicting COPD With Lung ImagingCHESTVol. 164Issue 5PreviewCOPD affects approximately 29 million people in the United States and is the third leading cause of death.1 Individuals with COPD experience chronic respiratory symptoms, exercise intolerance, and progression of their lung function. Identifying individuals at risk of developing COPD is crucial to prevent disease and improve patient care. Various approaches are used to assess the risk of developing COPD, including spirometry; history of smoking, symptoms, and exacerbations; and genetic factors. For instance, people who never reached peak lung function in young adulthood are at risk of developing COPD2; similarly, individuals exposed to cigarette smoking for a long term and individuals who smoke with repeated acute respiratory exacerbations may develop COPD. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
czy发布了新的文献求助10
3秒前
qaplay完成签到 ,获得积分0
3秒前
缥缈的思柔完成签到,获得积分20
3秒前
4秒前
7秒前
小萌发布了新的文献求助10
7秒前
7秒前
8秒前
11秒前
11秒前
11秒前
削菠萝发布了新的文献求助10
12秒前
哦东东完成签到 ,获得积分10
12秒前
汉堡包应助原野小年采纳,获得10
12秒前
领导范儿应助xxx采纳,获得40
13秒前
zz发布了新的文献求助10
14秒前
14秒前
15秒前
Lab夜归人发布了新的文献求助10
15秒前
生如夏花发布了新的文献求助10
16秒前
16秒前
FashionBoy应助jiusi采纳,获得10
16秒前
16秒前
Orange应助奋斗时光采纳,获得10
18秒前
18秒前
18秒前
无限的续发布了新的文献求助10
19秒前
21秒前
李小新发布了新的文献求助10
21秒前
大力衫完成签到,获得积分10
22秒前
青青子衿发布了新的文献求助10
23秒前
sing完成签到,获得积分10
23秒前
zss完成签到 ,获得积分10
24秒前
Lucas应助zz采纳,获得10
24秒前
多情的续完成签到,获得积分10
26秒前
26秒前
朱朱完成签到,获得积分10
26秒前
27秒前
原野小年发布了新的文献求助10
27秒前
赵依乐完成签到 ,获得积分10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053