Residual neural network‐assisted one‐class classification algorithm for melanoma recognition with imbalanced data

计算机科学 人工智能 人工神经网络 模式识别(心理学) 推论 Boosting(机器学习) 多类分类 解码方法 机器学习 班级(哲学) 算法 支持向量机
作者
Lisu Yu,Yifei Wang,Liyu Zhou,Jin-Sheng Wu,Zhenghai Wang
出处
期刊:Computational Intelligence [Wiley]
卷期号:39 (6): 1004-1021 被引量:2
标识
DOI:10.1111/coin.12578
摘要

Abstract Skin cancer, also known as melanoma, is a deadly form of skin cancer that can significantly improve survival rates when diagnosed at an early stage. It is usually diagnosed visually from dermoscopic images, and such visual assessment of skin cancer by the naked eye is a challenging and arduous task. Therefore, the detection of melanoma from dermoscopic images using trained artificial intelligence models is of great importance today. However, since melanoma is a rare disease, existing databases of skin lesions often contain highly unbalanced numbers of benign and malignant samples. In this paper, we propose a new one‐class classification‐based skin lesion classification strategy for small and unbalanced datasets. One‐class classification (OCC) is a special case of multi‐classification. OCC aims to learn a descriptive paradigm from positive class data (true data) during training and reject pseudo data (fake data) that do not conform to the paradigm during inference. OCC has great potential for application in anomaly detection problems. We have analyzed several approaches to the OCC task in recent years and propose a new design paradigm for the OCC problem, taking into account the unbalanced data set of the melanoma classification task. We have designed an improved OCC network based on this design paradigm, where the network is based on the architecture of a residual neural network, combining the coding and decoding idea of variational self‐encoder and the adversarial training idea of an adversarial neural network, using binary cross‐entropy as the loss function and introducing the channel attention mechanism. Tests on several publicly available dermatology datasets show that this improved OCC network addresses the unbalanced dataset situation in melanoma image classification to some extent while having relatively excellent performance. Compared with some traditional networks, it can obtain more stable training results and perform more consistently on complex datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
surain发布了新的文献求助10
刚刚
快乐书琴发布了新的文献求助10
刚刚
1秒前
2秒前
Nan发布了新的文献求助10
2秒前
3秒前
3秒前
VDC发布了新的文献求助10
3秒前
葛擎苍发布了新的文献求助10
4秒前
jimmyhui发布了新的文献求助10
4秒前
Pyrene发布了新的文献求助10
5秒前
ccc发布了新的文献求助10
6秒前
大可发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
JYX发布了新的文献求助10
10秒前
彭于晏应助dove采纳,获得10
10秒前
莉莉斯完成签到 ,获得积分10
10秒前
向雨竹发布了新的文献求助10
12秒前
沈达完成签到,获得积分20
12秒前
东方天奇发布了新的文献求助30
13秒前
渔Avery完成签到,获得积分10
13秒前
大渡河完成签到,获得积分10
13秒前
HC发布了新的文献求助10
14秒前
活力寻菱完成签到 ,获得积分10
14秒前
14秒前
16秒前
优美寻桃完成签到,获得积分10
17秒前
18秒前
jianwen1完成签到,获得积分10
18秒前
劲秉应助知性的白猫采纳,获得20
19秒前
宗师算个瓢啊完成签到 ,获得积分10
19秒前
19秒前
IvanLIu完成签到 ,获得积分10
20秒前
20秒前
优美寻桃发布了新的文献求助10
20秒前
wry关闭了wry文献求助
21秒前
21秒前
hhhhhhhhhh完成签到 ,获得积分10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748570
求助须知:如何正确求助?哪些是违规求助? 3291631
关于积分的说明 10073772
捐赠科研通 3007459
什么是DOI,文献DOI怎么找? 1651612
邀请新用户注册赠送积分活动 786566
科研通“疑难数据库(出版商)”最低求助积分说明 751765