清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Process identification and discrimination in the environmental dose rate time series of a radiopharmaceutical facility using machine learning techniques

单变量 过程(计算) 计算机科学 人工智能 随机森林 剂量率 鉴定(生物学) 机器学习 聚类分析 数据挖掘 多元统计 物理 医学物理学 植物 生物 操作系统
作者
Anirudh Chandra,Shashank S Saindane,Shanthi Murali
出处
期刊:Applied Radiation and Isotopes [Elsevier]
卷期号:198: 110878-110878 被引量:1
标识
DOI:10.1016/j.apradiso.2023.110878
摘要

Multi-facility nuclear sites with research reactors have several environmental area gamma monitors in a network as a part of their surveillance capability. However, the routine release of low levels of 41Ar gas from the reactor is prone to interfere with the recorded gamma dose rate and mask the genuine processes being monitored at the network's central control room. As a potential solution, machine learning techniques have been used in this study to autonomously identify and discriminate the genuine processes, viz., the radioactive consignment loading and its movement, at an interim radiopharmaceutical facility located close to a research reactor. To increase the richness of the recorded univariate dose rate time series, several additional features were created. A labelled dataset of process and non-process dose rate sub-sequences or segments was generated by subject matter experts, based on practical knowledge of the facility, and aided by k-means clustering algorithm. The labelled dataset was used to train several supervised classification models and the random forest class of models gave superior performance. The optimised random forest model was able to identify process sub-sequences with a precision of 82.35% and a specificity of 97.11%. The overall balanced accuracy of the model was 91% with a f1 score of 82%. This machine learning approach proved useful to autonomously identify genuine process driven sub-sequences in the univariate dose rate time series. It has an application in reducing the false alarms at exit portal monitors, especially at those sites where there is a potential for external interference in the monitored dose rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
44秒前
热情依白发布了新的文献求助30
49秒前
woxinyouyou完成签到,获得积分0
58秒前
房天川完成签到 ,获得积分10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
大喜喜发布了新的文献求助50
2分钟前
King16完成签到,获得积分10
3分钟前
碗碗豆喵完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
王梦秋完成签到 ,获得积分10
4分钟前
热情依白完成签到 ,获得积分10
4分钟前
yindi1991完成签到 ,获得积分10
4分钟前
4分钟前
欢呼亦绿完成签到,获得积分10
4分钟前
齐阳春完成签到 ,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
5分钟前
宇文雨文完成签到 ,获得积分10
6分钟前
Lucas应助didididm采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
萝卜猪完成签到,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
没时间解释了完成签到 ,获得积分10
9分钟前
老迟到的友桃完成签到 ,获得积分10
10分钟前
cdercder完成签到,获得积分0
10分钟前
xiaowangwang完成签到 ,获得积分10
10分钟前
小二郎应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
zyjsunye完成签到 ,获得积分10
11分钟前
聪慧的怀绿完成签到,获得积分10
12分钟前
13分钟前
HHM发布了新的文献求助10
13分钟前
13分钟前
13分钟前
HHM发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561606
求助须知:如何正确求助?哪些是违规求助? 4646674
关于积分的说明 14678855
捐赠科研通 4588030
什么是DOI,文献DOI怎么找? 2517275
邀请新用户注册赠送积分活动 1490581
关于科研通互助平台的介绍 1461620