亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Process identification and discrimination in the environmental dose rate time series of a radiopharmaceutical facility using machine learning techniques

单变量 过程(计算) 计算机科学 人工智能 随机森林 剂量率 鉴定(生物学) 机器学习 聚类分析 数据挖掘 多元统计 物理 植物 医学物理学 生物 操作系统
作者
Anirudh Chandra,Shashank S Saindane,Shanthi Murali
出处
期刊:Applied Radiation and Isotopes [Elsevier]
卷期号:198: 110878-110878 被引量:1
标识
DOI:10.1016/j.apradiso.2023.110878
摘要

Multi-facility nuclear sites with research reactors have several environmental area gamma monitors in a network as a part of their surveillance capability. However, the routine release of low levels of 41Ar gas from the reactor is prone to interfere with the recorded gamma dose rate and mask the genuine processes being monitored at the network's central control room. As a potential solution, machine learning techniques have been used in this study to autonomously identify and discriminate the genuine processes, viz., the radioactive consignment loading and its movement, at an interim radiopharmaceutical facility located close to a research reactor. To increase the richness of the recorded univariate dose rate time series, several additional features were created. A labelled dataset of process and non-process dose rate sub-sequences or segments was generated by subject matter experts, based on practical knowledge of the facility, and aided by k-means clustering algorithm. The labelled dataset was used to train several supervised classification models and the random forest class of models gave superior performance. The optimised random forest model was able to identify process sub-sequences with a precision of 82.35% and a specificity of 97.11%. The overall balanced accuracy of the model was 91% with a f1 score of 82%. This machine learning approach proved useful to autonomously identify genuine process driven sub-sequences in the univariate dose rate time series. It has an application in reducing the false alarms at exit portal monitors, especially at those sites where there is a potential for external interference in the monitored dose rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
量子星尘发布了新的文献求助10
18秒前
HH发布了新的文献求助10
20秒前
Lulu完成签到,获得积分10
38秒前
Yuki完成签到 ,获得积分10
45秒前
CC完成签到,获得积分10
46秒前
badyoungboy完成签到,获得积分10
55秒前
badyoungboy发布了新的文献求助10
59秒前
北陌完成签到 ,获得积分10
1分钟前
领导范儿应助郭楠楠采纳,获得10
1分钟前
完美世界应助木棉采纳,获得10
1分钟前
Nature应助yangjian采纳,获得10
1分钟前
1分钟前
郭楠楠发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
安静的从梦完成签到 ,获得积分10
1分钟前
颜卿完成签到 ,获得积分10
2分钟前
zh完成签到,获得积分10
2分钟前
youy完成签到 ,获得积分10
2分钟前
Hello应助郭楠楠采纳,获得10
2分钟前
2分钟前
2分钟前
开放道天发布了新的文献求助10
2分钟前
郭楠楠发布了新的文献求助10
2分钟前
晁子枫完成签到 ,获得积分10
2分钟前
taffysl完成签到,获得积分10
2分钟前
彭于晏应助开放道天采纳,获得10
3分钟前
脑洞疼应助HH采纳,获得10
3分钟前
kuan_完成签到 ,获得积分20
3分钟前
GIA完成签到,获得积分10
3分钟前
orangel完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287