Process identification and discrimination in the environmental dose rate time series of a radiopharmaceutical facility using machine learning techniques

单变量 过程(计算) 计算机科学 人工智能 随机森林 剂量率 鉴定(生物学) 机器学习 聚类分析 数据挖掘 多元统计 物理 医学物理学 植物 生物 操作系统
作者
Anirudh Chandra,Shashank S Saindane,Shanthi Murali
出处
期刊:Applied Radiation and Isotopes [Elsevier BV]
卷期号:198: 110878-110878 被引量:1
标识
DOI:10.1016/j.apradiso.2023.110878
摘要

Multi-facility nuclear sites with research reactors have several environmental area gamma monitors in a network as a part of their surveillance capability. However, the routine release of low levels of 41Ar gas from the reactor is prone to interfere with the recorded gamma dose rate and mask the genuine processes being monitored at the network's central control room. As a potential solution, machine learning techniques have been used in this study to autonomously identify and discriminate the genuine processes, viz., the radioactive consignment loading and its movement, at an interim radiopharmaceutical facility located close to a research reactor. To increase the richness of the recorded univariate dose rate time series, several additional features were created. A labelled dataset of process and non-process dose rate sub-sequences or segments was generated by subject matter experts, based on practical knowledge of the facility, and aided by k-means clustering algorithm. The labelled dataset was used to train several supervised classification models and the random forest class of models gave superior performance. The optimised random forest model was able to identify process sub-sequences with a precision of 82.35% and a specificity of 97.11%. The overall balanced accuracy of the model was 91% with a f1 score of 82%. This machine learning approach proved useful to autonomously identify genuine process driven sub-sequences in the univariate dose rate time series. It has an application in reducing the false alarms at exit portal monitors, especially at those sites where there is a potential for external interference in the monitored dose rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助居居家的朱居采纳,获得10
刚刚
1秒前
2秒前
2秒前
lili发布了新的文献求助10
3秒前
xwp发布了新的文献求助10
4秒前
西哥完成签到,获得积分10
4秒前
vivy完成签到 ,获得积分10
4秒前
6秒前
6秒前
深情安青应助gkw采纳,获得10
7秒前
7秒前
uiui发布了新的文献求助10
7秒前
韩小炜完成签到 ,获得积分10
8秒前
卡司发布了新的文献求助10
8秒前
Mircale发布了新的文献求助10
9秒前
wushengdeyu发布了新的文献求助200
10秒前
10秒前
Cssss完成签到,获得积分10
10秒前
11秒前
FashionBoy应助不完美的完美采纳,获得10
12秒前
斯文败类应助xwp采纳,获得10
12秒前
13秒前
小樱颖子发布了新的文献求助10
13秒前
闹心发布了新的文献求助10
13秒前
kunny完成签到 ,获得积分10
16秒前
机灵胡萝卜完成签到,获得积分10
16秒前
莫寒兮应助Cssss采纳,获得20
16秒前
机灵的冷风完成签到,获得积分10
17秒前
17秒前
小爱同学发布了新的文献求助10
18秒前
何梓怡发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
943840370完成签到,获得积分10
20秒前
AERHELP完成签到 ,获得积分10
21秒前
脆脆完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5145096
求助须知:如何正确求助?哪些是违规求助? 4342548
关于积分的说明 13523644
捐赠科研通 4183321
什么是DOI,文献DOI怎么找? 2293958
邀请新用户注册赠送积分活动 1294454
关于科研通互助平台的介绍 1237358