Process identification and discrimination in the environmental dose rate time series of a radiopharmaceutical facility using machine learning techniques

单变量 过程(计算) 计算机科学 人工智能 随机森林 剂量率 鉴定(生物学) 机器学习 聚类分析 数据挖掘 多元统计 物理 医学物理学 植物 生物 操作系统
作者
Anirudh Chandra,Shashank S Saindane,Shanthi Murali
出处
期刊:Applied Radiation and Isotopes [Elsevier BV]
卷期号:198: 110878-110878 被引量:1
标识
DOI:10.1016/j.apradiso.2023.110878
摘要

Multi-facility nuclear sites with research reactors have several environmental area gamma monitors in a network as a part of their surveillance capability. However, the routine release of low levels of 41Ar gas from the reactor is prone to interfere with the recorded gamma dose rate and mask the genuine processes being monitored at the network's central control room. As a potential solution, machine learning techniques have been used in this study to autonomously identify and discriminate the genuine processes, viz., the radioactive consignment loading and its movement, at an interim radiopharmaceutical facility located close to a research reactor. To increase the richness of the recorded univariate dose rate time series, several additional features were created. A labelled dataset of process and non-process dose rate sub-sequences or segments was generated by subject matter experts, based on practical knowledge of the facility, and aided by k-means clustering algorithm. The labelled dataset was used to train several supervised classification models and the random forest class of models gave superior performance. The optimised random forest model was able to identify process sub-sequences with a precision of 82.35% and a specificity of 97.11%. The overall balanced accuracy of the model was 91% with a f1 score of 82%. This machine learning approach proved useful to autonomously identify genuine process driven sub-sequences in the univariate dose rate time series. It has an application in reducing the false alarms at exit portal monitors, especially at those sites where there is a potential for external interference in the monitored dose rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bjbbh发布了新的文献求助30
1秒前
Biyanchao发布了新的文献求助10
1秒前
我是老大应助chen采纳,获得10
2秒前
liang完成签到 ,获得积分10
2秒前
summer完成签到,获得积分10
2秒前
脑洞疼应助sota采纳,获得10
2秒前
小章鱼发布了新的文献求助30
3秒前
Singularity应助粥粥爱糊糊采纳,获得10
3秒前
筋筋子发布了新的文献求助10
3秒前
情怀应助啦啦啦采纳,获得10
4秒前
YataMisaki发布了新的文献求助10
4秒前
4秒前
SYLH举报的风格求助涉嫌违规
5秒前
小豆豆应助wst1988采纳,获得30
5秒前
YAMO一发布了新的文献求助10
5秒前
5秒前
贤惠的白开水完成签到 ,获得积分10
5秒前
6秒前
现代的访曼应助Li采纳,获得20
6秒前
6秒前
JamesPei应助高分子采纳,获得10
8秒前
8秒前
兔BF完成签到,获得积分10
8秒前
9秒前
10秒前
SYLH应助孤独的幻香采纳,获得10
10秒前
11秒前
balabala发布了新的文献求助10
12秒前
老实小白菜完成签到,获得积分10
13秒前
13秒前
汉堡包应助Xailotier采纳,获得10
14秒前
YAMO一完成签到,获得积分10
14秒前
14秒前
李三阳完成签到 ,获得积分10
14秒前
千跃应助太清采纳,获得20
15秒前
悠旷完成签到 ,获得积分10
15秒前
爆米花应助past采纳,获得10
15秒前
刘壮实完成签到,获得积分10
15秒前
上官若男应助迷路芝麻采纳,获得10
15秒前
lb发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993