Process identification and discrimination in the environmental dose rate time series of a radiopharmaceutical facility using machine learning techniques

单变量 过程(计算) 计算机科学 人工智能 随机森林 剂量率 鉴定(生物学) 机器学习 聚类分析 数据挖掘 多元统计 物理 植物 医学物理学 生物 操作系统
作者
Anirudh Chandra,Shashank S Saindane,Shanthi Murali
出处
期刊:Applied Radiation and Isotopes [Elsevier]
卷期号:198: 110878-110878 被引量:1
标识
DOI:10.1016/j.apradiso.2023.110878
摘要

Multi-facility nuclear sites with research reactors have several environmental area gamma monitors in a network as a part of their surveillance capability. However, the routine release of low levels of 41Ar gas from the reactor is prone to interfere with the recorded gamma dose rate and mask the genuine processes being monitored at the network's central control room. As a potential solution, machine learning techniques have been used in this study to autonomously identify and discriminate the genuine processes, viz., the radioactive consignment loading and its movement, at an interim radiopharmaceutical facility located close to a research reactor. To increase the richness of the recorded univariate dose rate time series, several additional features were created. A labelled dataset of process and non-process dose rate sub-sequences or segments was generated by subject matter experts, based on practical knowledge of the facility, and aided by k-means clustering algorithm. The labelled dataset was used to train several supervised classification models and the random forest class of models gave superior performance. The optimised random forest model was able to identify process sub-sequences with a precision of 82.35% and a specificity of 97.11%. The overall balanced accuracy of the model was 91% with a f1 score of 82%. This machine learning approach proved useful to autonomously identify genuine process driven sub-sequences in the univariate dose rate time series. It has an application in reducing the false alarms at exit portal monitors, especially at those sites where there is a potential for external interference in the monitored dose rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斑马完成签到,获得积分10
2秒前
2秒前
2秒前
太叔若南完成签到 ,获得积分10
2秒前
毅然决然必然完成签到,获得积分10
2秒前
Cat给Cat的求助进行了留言
2秒前
正文完成签到,获得积分10
3秒前
LL完成签到,获得积分10
3秒前
柳觅夏完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
黑怕完成签到,获得积分10
4秒前
南烛完成签到 ,获得积分10
5秒前
寻道图强应助vivelejrlee采纳,获得50
5秒前
Ao_Jiang完成签到,获得积分10
5秒前
Jian完成签到,获得积分10
5秒前
简单刺猬完成签到,获得积分10
7秒前
7秒前
刘柳完成签到 ,获得积分10
7秒前
知返完成签到 ,获得积分10
7秒前
勤恳冰彤完成签到 ,获得积分10
7秒前
hbu123发布了新的文献求助10
11秒前
贪玩的万仇完成签到 ,获得积分10
12秒前
虚幻绿兰完成签到,获得积分10
12秒前
GLv完成签到,获得积分10
12秒前
黑包包大人完成签到,获得积分10
13秒前
鲤鱼谷秋完成签到 ,获得积分10
14秒前
14秒前
大民王完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
小魏哥完成签到,获得积分10
18秒前
19秒前
21秒前
22秒前
和谐的冬莲完成签到 ,获得积分10
22秒前
qss8807完成签到,获得积分10
23秒前
不系舟完成签到,获得积分10
23秒前
flipped完成签到,获得积分10
24秒前
neurist完成签到,获得积分10
24秒前
一YI发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715692
求助须知:如何正确求助?哪些是违规求助? 5236513
关于积分的说明 15274839
捐赠科研通 4866396
什么是DOI,文献DOI怎么找? 2612984
邀请新用户注册赠送积分活动 1563107
关于科研通互助平台的介绍 1520618