Process identification and discrimination in the environmental dose rate time series of a radiopharmaceutical facility using machine learning techniques

单变量 过程(计算) 计算机科学 人工智能 随机森林 剂量率 鉴定(生物学) 机器学习 聚类分析 数据挖掘 多元统计 物理 医学物理学 植物 生物 操作系统
作者
Anirudh Chandra,Shashank S Saindane,Shanthi Murali
出处
期刊:Applied Radiation and Isotopes [Elsevier]
卷期号:198: 110878-110878 被引量:1
标识
DOI:10.1016/j.apradiso.2023.110878
摘要

Multi-facility nuclear sites with research reactors have several environmental area gamma monitors in a network as a part of their surveillance capability. However, the routine release of low levels of 41Ar gas from the reactor is prone to interfere with the recorded gamma dose rate and mask the genuine processes being monitored at the network's central control room. As a potential solution, machine learning techniques have been used in this study to autonomously identify and discriminate the genuine processes, viz., the radioactive consignment loading and its movement, at an interim radiopharmaceutical facility located close to a research reactor. To increase the richness of the recorded univariate dose rate time series, several additional features were created. A labelled dataset of process and non-process dose rate sub-sequences or segments was generated by subject matter experts, based on practical knowledge of the facility, and aided by k-means clustering algorithm. The labelled dataset was used to train several supervised classification models and the random forest class of models gave superior performance. The optimised random forest model was able to identify process sub-sequences with a precision of 82.35% and a specificity of 97.11%. The overall balanced accuracy of the model was 91% with a f1 score of 82%. This machine learning approach proved useful to autonomously identify genuine process driven sub-sequences in the univariate dose rate time series. It has an application in reducing the false alarms at exit portal monitors, especially at those sites where there is a potential for external interference in the monitored dose rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐火车完成签到,获得积分10
刚刚
Biu完成签到 ,获得积分10
刚刚
12完成签到,获得积分10
刚刚
木南完成签到,获得积分10
1秒前
fangzhang发布了新的文献求助10
1秒前
cloud完成签到,获得积分10
2秒前
英姑应助你奈我何采纳,获得10
4秒前
Shiyao_Yuan发布了新的文献求助30
4秒前
hgl发布了新的文献求助10
5秒前
鲁远望完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
共享精神应助梓榆采纳,获得10
6秒前
Poik发布了新的文献求助10
7秒前
星辰大海应助维尼采纳,获得10
7秒前
8秒前
科研通AI6应助立尽西风采纳,获得10
8秒前
10秒前
科研通AI6应助Mure采纳,获得10
10秒前
刻苦海露完成签到,获得积分20
10秒前
10秒前
舒舒发布了新的文献求助10
11秒前
娜娜酱发布了新的文献求助10
11秒前
123456完成签到,获得积分10
11秒前
yaya完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
困敦发布了新的文献求助10
13秒前
13秒前
JamesPei应助害羞香菇采纳,获得10
13秒前
13秒前
Lucas应助独特鸽子采纳,获得10
14秒前
15秒前
科研通AI6应助Poik采纳,获得10
16秒前
木头完成签到,获得积分10
16秒前
maguodrgon发布了新的文献求助10
17秒前
17秒前
yy发布了新的文献求助10
17秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384621
求助须知:如何正确求助?哪些是违规求助? 4507409
关于积分的说明 14028029
捐赠科研通 4417130
什么是DOI,文献DOI怎么找? 2426268
邀请新用户注册赠送积分活动 1419058
关于科研通互助平台的介绍 1397395