已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PSRQSP: An effective approach for the interpretable prediction of quorum sensing peptide using propensity score representation learning

计算机科学 群体感应 机器学习 人工智能 标杆管理 预测建模 毒力 生物 营销 基因 业务 生物化学
作者
Phasit Charoenkwan,Pramote Chumnanpuen,Nalini Schaduangrat,Changmin Oh,Balachandran Manavalan,Watshara Shoombuatong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106784-106784 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.106784
摘要

Quorum sensing peptides (QSPs) are microbial signaling molecules involved in several cellular processes, such as cellular communication, virulence expression, bioluminescence, and swarming, in various bacterial species. Understanding QSPs is essential for identifying novel drug targets for controlling bacterial populations and pathogenicity. In this study, we present a novel computational approach (PSRQSP) for improving the prediction and analysis of QSPs. In PSRQSP, we develop a novel propensity score representation learning (PSR) scheme. Specifically, we utilized the PSR approach to extract and learn a comprehensive set of estimated propensities of 20 amino acids, 400 dipeptides, and 400 g-gap dipeptides from a pool of scoring card method-based models. Finally, to maximize the utility of the propensity scores, we explored a set of optimal propensity scores and combined them to construct a final meta-predictor. Our experimental results showed that combining multiview propensity scores was more beneficial for identifying QSPs than the conventional feature descriptors. Moreover, extensive benchmarking experiments based on the independent test were sufficient to demonstrate the predictive capability and effectiveness of PSRQSP by outperforming the conventional ML-based and existing methods, with an accuracy of 94.44% and AUC of 0.967. PSR-derived propensity scores were employed to determine the crucial physicochemical properties for a better understanding of the functional mechanisms of QSPs. Finally, we constructed an easy-to-use web server for the PSRQSP (http://pmlabstack.pythonanywhere.com/PSRQSP). PSRQSP is anticipated to be an efficient computational tool for accelerating the data-driven discovery of potential QSPs for drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默采枫完成签到,获得积分20
1秒前
机灵的天玉完成签到 ,获得积分10
1秒前
总是很简单完成签到 ,获得积分10
2秒前
3秒前
默默采枫发布了新的文献求助30
5秒前
5秒前
科研通AI2S应助obito采纳,获得10
7秒前
Zhang完成签到 ,获得积分10
7秒前
梓雨关注了科研通微信公众号
7秒前
8秒前
mos2发布了新的文献求助20
8秒前
芊芊发布了新的文献求助10
9秒前
9秒前
9秒前
科研通AI6应助科研狗采纳,获得10
11秒前
Jenny发布了新的文献求助10
11秒前
13秒前
Lhahaha完成签到 ,获得积分10
13秒前
long完成签到 ,获得积分10
13秒前
大个应助keyanning采纳,获得10
14秒前
16秒前
16秒前
Evilw1an完成签到 ,获得积分10
16秒前
kiyoshi发布了新的文献求助40
17秒前
17秒前
Robert发布了新的文献求助10
19秒前
19秒前
星辰大海应助Lorain采纳,获得10
21秒前
22秒前
李国铭发布了新的文献求助10
22秒前
23秒前
obito发布了新的文献求助10
23秒前
小二郎应助kangkang采纳,获得10
25秒前
yuanshuai发布了新的文献求助10
27秒前
27秒前
木子发布了新的文献求助10
28秒前
29秒前
31秒前
31秒前
limingming完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488170
求助须知:如何正确求助?哪些是违规求助? 4587174
关于积分的说明 14412856
捐赠科研通 4518407
什么是DOI,文献DOI怎么找? 2475741
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263