PSRQSP: An effective approach for the interpretable prediction of quorum sensing peptide using propensity score representation learning

计算机科学 群体感应 机器学习 人工智能 标杆管理 预测建模 毒力 生物 营销 基因 业务 生物化学
作者
Phasit Charoenkwan,Pramote Chumnanpuen,Nalini Schaduangrat,Changmin Oh,Balachandran Manavalan,Watshara Shoombuatong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106784-106784 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.106784
摘要

Quorum sensing peptides (QSPs) are microbial signaling molecules involved in several cellular processes, such as cellular communication, virulence expression, bioluminescence, and swarming, in various bacterial species. Understanding QSPs is essential for identifying novel drug targets for controlling bacterial populations and pathogenicity. In this study, we present a novel computational approach (PSRQSP) for improving the prediction and analysis of QSPs. In PSRQSP, we develop a novel propensity score representation learning (PSR) scheme. Specifically, we utilized the PSR approach to extract and learn a comprehensive set of estimated propensities of 20 amino acids, 400 dipeptides, and 400 g-gap dipeptides from a pool of scoring card method-based models. Finally, to maximize the utility of the propensity scores, we explored a set of optimal propensity scores and combined them to construct a final meta-predictor. Our experimental results showed that combining multiview propensity scores was more beneficial for identifying QSPs than the conventional feature descriptors. Moreover, extensive benchmarking experiments based on the independent test were sufficient to demonstrate the predictive capability and effectiveness of PSRQSP by outperforming the conventional ML-based and existing methods, with an accuracy of 94.44% and AUC of 0.967. PSR-derived propensity scores were employed to determine the crucial physicochemical properties for a better understanding of the functional mechanisms of QSPs. Finally, we constructed an easy-to-use web server for the PSRQSP (http://pmlabstack.pythonanywhere.com/PSRQSP). PSRQSP is anticipated to be an efficient computational tool for accelerating the data-driven discovery of potential QSPs for drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
秋子完成签到,获得积分20
刚刚
灰灰发布了新的文献求助10
刚刚
1秒前
shenyanlei发布了新的文献求助10
2秒前
2秒前
3秒前
撒旦啊实打实的完成签到,获得积分10
3秒前
北冥风发布了新的文献求助10
3秒前
小蘑菇应助伊利丹采纳,获得10
4秒前
日尧完成签到,获得积分10
4秒前
5秒前
完美世界应助朱朱采纳,获得10
5秒前
6秒前
无极微光应助shenyanlei采纳,获得20
7秒前
无奈灵枫完成签到,获得积分10
7秒前
7秒前
7秒前
馥郁发布了新的文献求助10
8秒前
8秒前
浮游应助帮我顺利毕业采纳,获得10
8秒前
9秒前
pp发布了新的文献求助10
9秒前
科研通AI6应助詹娜娜采纳,获得10
9秒前
joe完成签到,获得积分10
9秒前
DrLin完成签到 ,获得积分10
10秒前
桐桐应助淮安重午采纳,获得10
10秒前
梦里花落声应助张磊采纳,获得10
11秒前
Owen应助张磊采纳,获得10
11秒前
tears发布了新的文献求助10
11秒前
12秒前
12秒前
苗条大山发布了新的文献求助10
12秒前
12秒前
12秒前
福斯卡发布了新的文献求助30
13秒前
13秒前
不吃橘子发布了新的文献求助10
13秒前
有趣的桃发布了新的文献求助10
14秒前
顾矜应助啦啦啦采纳,获得10
15秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443045
求助须知:如何正确求助?哪些是违规求助? 4553014
关于积分的说明 14240267
捐赠科研通 4474566
什么是DOI,文献DOI怎么找? 2452011
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418682