PSRQSP: An effective approach for the interpretable prediction of quorum sensing peptide using propensity score representation learning

计算机科学 群体感应 机器学习 人工智能 标杆管理 预测建模 毒力 生物 营销 基因 业务 生物化学
作者
Phasit Charoenkwan,Pramote Chumnanpuen,Nalini Schaduangrat,Changmin Oh,Balachandran Manavalan,Watshara Shoombuatong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106784-106784 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.106784
摘要

Quorum sensing peptides (QSPs) are microbial signaling molecules involved in several cellular processes, such as cellular communication, virulence expression, bioluminescence, and swarming, in various bacterial species. Understanding QSPs is essential for identifying novel drug targets for controlling bacterial populations and pathogenicity. In this study, we present a novel computational approach (PSRQSP) for improving the prediction and analysis of QSPs. In PSRQSP, we develop a novel propensity score representation learning (PSR) scheme. Specifically, we utilized the PSR approach to extract and learn a comprehensive set of estimated propensities of 20 amino acids, 400 dipeptides, and 400 g-gap dipeptides from a pool of scoring card method-based models. Finally, to maximize the utility of the propensity scores, we explored a set of optimal propensity scores and combined them to construct a final meta-predictor. Our experimental results showed that combining multiview propensity scores was more beneficial for identifying QSPs than the conventional feature descriptors. Moreover, extensive benchmarking experiments based on the independent test were sufficient to demonstrate the predictive capability and effectiveness of PSRQSP by outperforming the conventional ML-based and existing methods, with an accuracy of 94.44% and AUC of 0.967. PSR-derived propensity scores were employed to determine the crucial physicochemical properties for a better understanding of the functional mechanisms of QSPs. Finally, we constructed an easy-to-use web server for the PSRQSP (http://pmlabstack.pythonanywhere.com/PSRQSP). PSRQSP is anticipated to be an efficient computational tool for accelerating the data-driven discovery of potential QSPs for drug discovery and development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdad发布了新的文献求助10
1秒前
Juneaper发布了新的文献求助10
2秒前
妃妃飞完成签到,获得积分10
3秒前
文静达发布了新的文献求助20
3秒前
慕青应助帝国超级硕士采纳,获得10
4秒前
4秒前
白帝城中云出门完成签到,获得积分10
5秒前
夹心饼干完成签到 ,获得积分10
6秒前
鱼人完成签到,获得积分10
6秒前
赵立闯完成签到,获得积分10
6秒前
27关闭了27文献求助
6秒前
7秒前
7秒前
9秒前
桐桐应助Asofi采纳,获得10
9秒前
chunzi发布了新的文献求助10
9秒前
9秒前
10秒前
Juneaper完成签到,获得积分10
10秒前
啾啾发布了新的文献求助10
11秒前
hwl26发布了新的文献求助10
12秒前
Zx_1993应助花生米采纳,获得10
12秒前
深情安青应助大方雁露采纳,获得10
13秒前
Victor完成签到 ,获得积分10
13秒前
蓝田发布了新的文献求助10
13秒前
14秒前
15秒前
绾绾完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
18秒前
zho应助LLLL采纳,获得10
19秒前
CodeCraft应助小田采纳,获得10
20秒前
Fung发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589556
求助须知:如何正确求助?哪些是违规求助? 4674233
关于积分的说明 14792577
捐赠科研通 4628652
什么是DOI,文献DOI怎么找? 2532334
邀请新用户注册赠送积分活动 1500990
关于科研通互助平台的介绍 1468472