PSRQSP: An effective approach for the interpretable prediction of quorum sensing peptide using propensity score representation learning

计算机科学 群体感应 机器学习 人工智能 标杆管理 预测建模 毒力 生物 营销 基因 业务 生物化学
作者
Phasit Charoenkwan,Pramote Chumnanpuen,Nalini Schaduangrat,Changmin Oh,Balachandran Manavalan,Watshara Shoombuatong
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106784-106784 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.106784
摘要

Quorum sensing peptides (QSPs) are microbial signaling molecules involved in several cellular processes, such as cellular communication, virulence expression, bioluminescence, and swarming, in various bacterial species. Understanding QSPs is essential for identifying novel drug targets for controlling bacterial populations and pathogenicity. In this study, we present a novel computational approach (PSRQSP) for improving the prediction and analysis of QSPs. In PSRQSP, we develop a novel propensity score representation learning (PSR) scheme. Specifically, we utilized the PSR approach to extract and learn a comprehensive set of estimated propensities of 20 amino acids, 400 dipeptides, and 400 g-gap dipeptides from a pool of scoring card method-based models. Finally, to maximize the utility of the propensity scores, we explored a set of optimal propensity scores and combined them to construct a final meta-predictor. Our experimental results showed that combining multiview propensity scores was more beneficial for identifying QSPs than the conventional feature descriptors. Moreover, extensive benchmarking experiments based on the independent test were sufficient to demonstrate the predictive capability and effectiveness of PSRQSP by outperforming the conventional ML-based and existing methods, with an accuracy of 94.44% and AUC of 0.967. PSR-derived propensity scores were employed to determine the crucial physicochemical properties for a better understanding of the functional mechanisms of QSPs. Finally, we constructed an easy-to-use web server for the PSRQSP (http://pmlabstack.pythonanywhere.com/PSRQSP). PSRQSP is anticipated to be an efficient computational tool for accelerating the data-driven discovery of potential QSPs for drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jackiechen发布了新的文献求助80
刚刚
刚刚
石中酒完成签到 ,获得积分10
1秒前
田様应助惜名采纳,获得10
2秒前
沉默寻凝完成签到,获得积分10
4秒前
lalala发布了新的文献求助10
5秒前
破晓完成签到,获得积分10
5秒前
含蓄幻枫发布了新的文献求助10
8秒前
77完成签到 ,获得积分10
9秒前
12秒前
小程别放弃完成签到,获得积分10
12秒前
Shmilykk完成签到,获得积分20
13秒前
GL完成签到 ,获得积分10
14秒前
16秒前
16秒前
17秒前
ee发布了新的文献求助10
17秒前
爱静静应助downdown采纳,获得10
20秒前
micomico发布了新的文献求助10
21秒前
万能图书馆应助dongua采纳,获得10
21秒前
22秒前
LHW完成签到,获得积分10
25秒前
ee完成签到,获得积分20
26秒前
Jemezs完成签到,获得积分10
27秒前
花玥鹿完成签到,获得积分10
28秒前
29秒前
xiaomou完成签到 ,获得积分10
30秒前
汉堡包应助micomico采纳,获得10
31秒前
HJCKYCG发布了新的文献求助30
34秒前
35秒前
机灵哲瀚完成签到,获得积分10
35秒前
DG完成签到,获得积分10
35秒前
iMoney完成签到 ,获得积分10
38秒前
Mike发布了新的文献求助10
40秒前
一区李发布了新的文献求助10
40秒前
41秒前
peace完成签到 ,获得积分10
42秒前
yunnguw发布了新的文献求助10
47秒前
一区李完成签到,获得积分10
47秒前
Mike完成签到,获得积分10
47秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141282
求助须知:如何正确求助?哪些是违规求助? 2792281
关于积分的说明 7802009
捐赠科研通 2448470
什么是DOI,文献DOI怎么找? 1302541
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237