Predicting rice grain yield using normalized difference vegetation index from UAV and GreenSeeker

归一化差异植被指数 环境科学 农学 产量(工程) 植被指数 水稻 遥感 植被(病理学) 数学 叶面积指数 生物 地理 医学 材料科学 病理 冶金 生物化学 基因
作者
Hiroshi Nakano,Ryo Tanaka,Senlin Guan,Hideki Ohdan
出处
期刊:Crop and environment 卷期号:2 (2): 59-65 被引量:1
标识
DOI:10.1016/j.crope.2023.03.001
摘要

A precise, simple, and rapid growth diagnosis method using normalized difference vegetation index (NDVI) obtained by unmanned aerial vehicle (UAV), which will help determine nitrogen (N) application rate to increase grain yield in numerous farmers' fields, is necessary for the development of a robust production system for rice (Oryza sativa L.). In the present study, we examined the relationship between UAV-NDVI and NDVI measured with the GreenSeeker handheld crop sensor (GS-NDVI), and between grain yield and UAV-NDVI or GS-NDVI at the reproductive stage in the plant communities at 4–1 ​week (wk) before heading in 2018 and 2019 and in 2020 and 2021, respectively. In the data of each measurement day in 2018 and 2019, the relationship between UAV-NDVI and GS-NDVI was strongly positive. However, in the pooled data of different measurement days, the relationship between UAV-NDVI and GS-NDVI was weakly positive. This was because GS-NDVI was more constant under various climatic conditions and across various time of day than UAV-NDVI at the reproductive stage. Furthermore, in the pooled data of different years in 2020 and 2021, GS-NDVI correlated more strongly with grain yield than UAV-NDVI between 3 and 1 ​wk before heading. To increase the efficiency of growth diagnosis and yield prediction in the numerous farmers’ fields, UAV-NDVI could be used with correction by a few measurements of GS-NDVI determined on the same day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樱悼柳雪完成签到,获得积分10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
跳跳兔完成签到,获得积分10
2秒前
不配.应助科研通管家采纳,获得20
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
3秒前
超人Steiner完成签到 ,获得积分10
3秒前
1234发布了新的文献求助10
4秒前
5秒前
susu发布了新的文献求助10
5秒前
7秒前
Taylor完成签到,获得积分0
10秒前
10秒前
XinEr完成签到 ,获得积分10
11秒前
小雕完成签到,获得积分10
14秒前
SpongeBob发布了新的文献求助10
16秒前
NEW完成签到 ,获得积分10
22秒前
23秒前
Bismarck发布了新的文献求助10
23秒前
susu完成签到,获得积分10
24秒前
24秒前
25秒前
星星完成签到 ,获得积分10
26秒前
enli发布了新的文献求助10
27秒前
思源应助清脆大娘采纳,获得10
27秒前
28秒前
Jasper应助明理雪碧采纳,获得10
29秒前
NEW发布了新的文献求助10
29秒前
sje发布了新的文献求助10
30秒前
哭泣旭尧完成签到,获得积分10
30秒前
ding应助酷www采纳,获得10
30秒前
asd发布了新的文献求助10
32秒前
36秒前
孑孓完成签到,获得积分10
37秒前
38秒前
不配.应助wxxx采纳,获得20
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140260
求助须知:如何正确求助?哪些是违规求助? 2791039
关于积分的说明 7797743
捐赠科研通 2447527
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194