碳二亚胺
肽
伤口愈合
聚己内酯
成纤维细胞
体内
化学
酵母
脚手架
自组装肽
体外
生物医学工程
生物化学
聚合物
免疫学
医学
有机化学
生物
生物技术
作者
Mahta Mirzaei,Gianina Dodi,Ioannis Gardikiotis,Sorin Aurelian Pasca,Saeed Mirdamadi,Gilles Subr,Cécile Echalier,Chloé Puel,Rino Morent,Rouba Ghobeira,Nazila Soleymanzadeh,Muriel Moser,Stanislas Goriel,Amin Shavandi
出处
期刊:Biomaterials advances
日期:2023-06-01
卷期号:149: 213361-213361
标识
DOI:10.1016/j.bioadv.2023.213361
摘要
In this study melt electro written (MEW) scaffolds of poly(ε-caprolactone) PCL are decorated with anti-inflammatory yeast-derived peptide for skin wound healing. Initially, 13 different yeast-derived peptides were screened and analyzed using both in vitro and in vivo assays. The MEW scaffolds are functionalized with the selected peptide VLSTSFPPW (VW-9) with the highest activity in reducing pro-inflammatory cytokines and stimulating fibroblast proliferation, migration, and collagen production. The peptide was conjugated to the MEW scaffolds using carbodiimide (CDI) and thiol chemistry, with and without plasma treatment, as well as by directly mixing the peptide with the polymer before printing. The MEW scaffolds modified using CDI and thiol chemistry with plasma treatment showed improved fibroblast and macrophage penetration and adhesion, as well as increased cell proliferation and superior anti-inflammatory properties, compared to the other groups. When applied to full-thickness excisional wounds in rats, the peptide-modified MEW scaffold significantly enhanced the healing process compared to controls (p < 0.05). This study provides proof of concept for using yeast-derived peptides to functionalize biomaterials for skin wound healing.
科研通智能强力驱动
Strongly Powered by AbleSci AI