Numerical modeling of thermal runaway for low temperature cycling lithium-ion batteries

热失控 放热反应 电解质 自行车 发热 锂(药物) 温度循环 热的 材料科学 锂离子电池 热力学 电极 化学 物理 电池(电) 物理化学 考古 有机化学 功率(物理) 医学 内分泌学 历史
作者
Luyao Zhao,Minxue Zheng,Junming Zhang,Hong Liu,Wei Li,Mingyi Chen
出处
期刊:Journal of energy storage [Elsevier]
卷期号:63: 107053-107053 被引量:35
标识
DOI:10.1016/j.est.2023.107053
摘要

Thermal runaway is still recognized as one of the most important hazards of lithium-ion batteries (LIBs), which prevents the application of LIBs on electric vehicles and stationary energy storage system. Lithium plating, which is mostly observed in LIBs after low temperature cycling, contributes significantly to not only ageing effect but also deterioration of battery thermal runaway (TR) performance. This study developed a thermal runaway model for low-temperature cycling LIBs, in which an exothermic reaction between metal lithium and electrolyte was introduced into the thermal abuse reactions to take the ageing effect into account. Hot oven abuse tests were conducted to validate the model. It was found that the TR process can be divided into three stages according to the variations of cell voltage. The simulations of hot oven abuse tests showed that for low temperature cycling cells, the reaction between plated lithium and electrolyte occurred at around 140 °C, which promoted the reactions and led to an earlier start of TR. Heat generation from the reaction of each component was quantified based on the simulations. The results showed that the total heat generations during TR increased only a little with ageing. The positive-electrolyte reaction was the largest heat source and the negative-electrolyte reaction was the second. Heat generation from the deposited Li-electrolyte reaction increased with the ageing of cells. This work helps to understand the TR mechanism of aged LIBs and successfully predicts the TR behaviors of low-temperature cycling cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
鲸鱼完成签到,获得积分10
1秒前
搜集达人应助zdxs采纳,获得10
1秒前
1秒前
领导范儿应助kelonyzy采纳,获得10
1秒前
朝思暮想完成签到,获得积分10
1秒前
李爱国应助honghuxian采纳,获得10
1秒前
卢珈馨发布了新的文献求助10
2秒前
12788发布了新的文献求助10
2秒前
3秒前
冯冯完成签到,获得积分10
3秒前
向北完成签到,获得积分10
4秒前
独特一刀发布了新的文献求助30
4秒前
ss发布了新的文献求助10
4秒前
虾虾发布了新的文献求助10
4秒前
NexusExplorer应助不知道采纳,获得10
5秒前
阿馨发布了新的文献求助30
5秒前
5秒前
七里香菜发布了新的文献求助10
5秒前
可乐龙猫发布了新的文献求助10
6秒前
qks发布了新的文献求助100
6秒前
菜菜完成签到,获得积分10
6秒前
7秒前
酷波er应助典雅的俊驰采纳,获得10
7秒前
7秒前
近代发布了新的文献求助10
7秒前
科研通AI6应助Leona666采纳,获得30
7秒前
chenling完成签到,获得积分10
8秒前
mmol发布了新的文献求助30
8秒前
山茶谱子完成签到,获得积分20
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
酷波er应助hl采纳,获得10
9秒前
阿白发布了新的文献求助10
10秒前
sunny发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
时荒发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389