Numerical modeling of thermal runaway for low temperature cycling lithium-ion batteries

热失控 放热反应 电解质 自行车 发热 锂(药物) 温度循环 热的 材料科学 锂离子电池 热力学 电极 化学 物理 电池(电) 物理化学 考古 有机化学 功率(物理) 医学 内分泌学 历史
作者
Luyao Zhao,Minxue Zheng,Junming Zhang,Hong Liu,Wei Li,Mingyi Chen
出处
期刊:Journal of energy storage [Elsevier]
卷期号:63: 107053-107053 被引量:35
标识
DOI:10.1016/j.est.2023.107053
摘要

Thermal runaway is still recognized as one of the most important hazards of lithium-ion batteries (LIBs), which prevents the application of LIBs on electric vehicles and stationary energy storage system. Lithium plating, which is mostly observed in LIBs after low temperature cycling, contributes significantly to not only ageing effect but also deterioration of battery thermal runaway (TR) performance. This study developed a thermal runaway model for low-temperature cycling LIBs, in which an exothermic reaction between metal lithium and electrolyte was introduced into the thermal abuse reactions to take the ageing effect into account. Hot oven abuse tests were conducted to validate the model. It was found that the TR process can be divided into three stages according to the variations of cell voltage. The simulations of hot oven abuse tests showed that for low temperature cycling cells, the reaction between plated lithium and electrolyte occurred at around 140 °C, which promoted the reactions and led to an earlier start of TR. Heat generation from the reaction of each component was quantified based on the simulations. The results showed that the total heat generations during TR increased only a little with ageing. The positive-electrolyte reaction was the largest heat source and the negative-electrolyte reaction was the second. Heat generation from the deposited Li-electrolyte reaction increased with the ageing of cells. This work helps to understand the TR mechanism of aged LIBs and successfully predicts the TR behaviors of low-temperature cycling cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大萌发布了新的文献求助10
1秒前
1秒前
Owen应助三水采纳,获得10
2秒前
酷波er应助杨旭采纳,获得10
2秒前
2秒前
NexusExplorer应助感动的白梅采纳,获得10
2秒前
西奥发布了新的文献求助10
2秒前
长剑玉珥完成签到,获得积分10
2秒前
mika910完成签到 ,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
liao应助zwc采纳,获得10
4秒前
汉堡包应助无昵称采纳,获得10
4秒前
4秒前
sqcpk完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
小菜一碟完成签到,获得积分10
4秒前
ori完成签到,获得积分10
5秒前
SibetHu发布了新的文献求助10
6秒前
CodeCraft应助小华采纳,获得10
6秒前
6秒前
6秒前
bkagyin应助豆儿嘚小豆儿采纳,获得10
6秒前
典雅夏之完成签到,获得积分10
6秒前
hy发布了新的文献求助10
6秒前
6秒前
bkagyin应助啧啧啧采纳,获得10
7秒前
7秒前
曾经富发布了新的文献求助10
7秒前
7秒前
听雨应助桃子e采纳,获得10
7秒前
潇洒紫真发布了新的文献求助10
8秒前
科研通AI2S应助Catherine采纳,获得10
8秒前
sss发布了新的文献求助10
8秒前
大萌完成签到,获得积分10
8秒前
bkagyin应助QQQ采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440