A Unifying Approach to Inverse Problems of Ultrasound Beamforming and Deconvolution

波束赋形 反褶积 盲反褶积 计算机科学 算法 点扩散函数 反问题 数学优化 人工智能 数学 电信 数学分析
作者
Sobhan Goudarzi,Adrian Basarab,Hassan Rivaz
出处
期刊:IEEE transactions on computational imaging 卷期号:9: 197-209 被引量:5
标识
DOI:10.1109/tci.2023.3248945
摘要

Beamforming is an essential step in the ultrasound image formation pipeline and has recently attracted growing interest. An important goal of beamforming is to increase the image spatial resolution, or in other words to narrow down the system Point Spread Function (PSF). In parallel to beamforming approaches, deconvolution methods have also been explored in ultrasound imaging to mitigate the adverse effects of PSF. Unfortunately, these two steps have only been considered separately in a sequential approach. Herein, a novel framework for unifying beamforming and deconvolution in ultrasound image reconstruction is introduced. More specifically, the proposed formulation is a regularized inverse problem including two linear models for beamforming and deconvolution plus additional sparsity constraint. We take advantage of the alternating direction method of multipliers algorithm to find the solution of the joint optimization problem. The performance evaluation is presented on a set of publicly available simulations, real phantoms, and in vivo data. As compared to Delay-And-Sum (DAS) beamforming, simulation results indicate improvements of 45% and 44% in terms of axial and lateral resolution, respectively. Moreover, the proposed method improves the contrast of simulation data by 6.7% in comparison to DAS. The superiority of the proposed approach in comparison with the sequential approach as well as the state-of-the-art beamforming and deconvolution approaches is also shown.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_enPJa8发布了新的文献求助10
刚刚
Drew11发布了新的文献求助10
2秒前
2秒前
希望天下0贩的0应助renovel采纳,获得10
3秒前
4秒前
文静画板完成签到,获得积分10
4秒前
香蕉觅云应助酷酷河马采纳,获得10
4秒前
lily完成签到,获得积分10
4秒前
6秒前
6秒前
Akim应助zzznznnn采纳,获得10
6秒前
大个应助奋斗水香采纳,获得10
6秒前
9秒前
9秒前
乐乐应助小何采纳,获得10
10秒前
kotwd关注了科研通微信公众号
10秒前
10秒前
12秒前
无我发布了新的文献求助10
13秒前
皮代谷发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
MisSorrow完成签到,获得积分10
15秒前
15秒前
mimi发布了新的文献求助10
15秒前
18秒前
蜗牛很酷完成签到,获得积分20
18秒前
平淡一兰完成签到,获得积分10
19秒前
ZZ完成签到,获得积分10
19秒前
19秒前
书包发布了新的文献求助10
19秒前
20秒前
21秒前
852应助清秀书桃采纳,获得10
21秒前
小智发布了新的文献求助10
21秒前
360071717完成签到,获得积分10
22秒前
denghuiying完成签到,获得积分20
22秒前
CipherSage应助xxdn采纳,获得10
24秒前
júpiter完成签到,获得积分10
24秒前
卡卡罗特完成签到,获得积分10
25秒前
奋斗水香发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771434
求助须知:如何正确求助?哪些是违规求助? 5591374
关于积分的说明 15427373
捐赠科研通 4904743
什么是DOI,文献DOI怎么找? 2638944
邀请新用户注册赠送积分活动 1586771
关于科研通互助平台的介绍 1541784