Application of wavelet-packet transform driven deep learning method in PM2.5 concentration prediction: A case study of Qingdao, China

一般化 计算机科学 人工智能 小波 深度学习 小波包分解 小波变换 可持续发展 数据挖掘 大数据 机器学习 数学 数学分析 政治学 法学
作者
Qinghe Zheng,Xinyu Tian,Zhiguo Yu,Nan Jiang,Abdussalam Elhanashi,Sergio Saponara,Rui Yu
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:92: 104486-104486 被引量:21
标识
DOI:10.1016/j.scs.2023.104486
摘要

Air pollution is one of the most serious environmental problems faced by human beings, and it is also a hot topic in the development of sustainable cities. Accurate PM2.5 prediction plays an important supporting role in urban governance and planning, and government decision-making. Hence, air quality sensing and prediction systems based on artificial intelligence take more and more place in the governance towards sustainable cities. In this paper, we propose a wavelet-packet transform (WPT) driven deep learning model to predict the hourly PM2.5 concentration and verify its effectiveness when applied to Qingdao, China. The wavelet packet is first applied to decompose the meteorological data into sub-time series with different frequencies at different resolutions (STSs-DFDR). Then a multi-dimensional LSTM considering both spatial and temporal information is developed to extract key features from STSs-DFDR to accomplish PM2.5 prediction. As far as we know, this is the first attempt to simultaneously predict PM2.5 concentrations in different regions with a single model. Moreover, we find that the multi-scale analysis of time series is of great help to improve the cross-regional generalization of deep learning models. Finally, experimental results show that the proposed method achieves state-of-the-art PM2.5 prediction performance by comparing it with various methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助福猪猪采纳,获得10
1秒前
霍楠完成签到,获得积分10
2秒前
塔塔饼完成签到,获得积分10
2秒前
2秒前
无情的牛马完成签到,获得积分10
3秒前
可爱的函函应助Chem采纳,获得10
3秒前
激昂的秀发完成签到,获得积分10
3秒前
3秒前
爱笑的千寻完成签到,获得积分10
3秒前
hbc完成签到,获得积分10
4秒前
水木应助大东东采纳,获得10
4秒前
外向电灯胆完成签到,获得积分10
4秒前
咿呀发布了新的文献求助10
4秒前
4秒前
4秒前
酷波er应助hahaha采纳,获得10
5秒前
xiaozang完成签到,获得积分10
5秒前
榆木桢楠完成签到,获得积分10
6秒前
7秒前
Ying瀅发布了新的文献求助10
7秒前
Jerry完成签到,获得积分10
8秒前
彼岸发布了新的文献求助10
8秒前
英姑应助顺利乐天采纳,获得10
8秒前
ASA完成签到,获得积分10
8秒前
陈嘻嘻嘻嘻完成签到,获得积分10
9秒前
爆米花应助外向电灯胆采纳,获得10
9秒前
li发布了新的文献求助10
9秒前
ceeray23应助猪猪侠采纳,获得10
10秒前
10秒前
BBBB小拳头发布了新的文献求助10
10秒前
gougou发布了新的文献求助10
11秒前
YangD_H完成签到,获得积分10
12秒前
打打应助wzy采纳,获得10
12秒前
徐慕源完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
Sean完成签到,获得积分10
15秒前
tanghong完成签到,获得积分10
15秒前
福猪猪发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Taxonomic and phylogenetic evidence reveal two new Volvariella species (Agaricales, Volvariellaceae) from Denmark 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445313
求助须知:如何正确求助?哪些是违规求助? 3041375
关于积分的说明 8984847
捐赠科研通 2729973
什么是DOI,文献DOI怎么找? 1497311
科研通“疑难数据库(出版商)”最低求助积分说明 692169
邀请新用户注册赠送积分活动 689724