Utilization of crowdsourced macroseismic observations to distinguish damaging from harmless earthquakes globally within minutes of an event

概率逻辑 计算机科学 事件(粒子物理) 贝叶斯概率 贝叶斯定理 人工智能 量子力学 物理
作者
Henning Lilienkamp,Rémy Bossu,Fabrice Cotton,Francesco Finazzi,Matthieu Landès,Graeme Weatherill
标识
DOI:10.5194/egusphere-egu23-14699
摘要

Rapid assessment of an earthquake’s impact on the affected society is a crucial step in the early phase of disaster management, determining the further organization of civil protection measures. In this study, we demonstrate that felt-reports containing macroseismic observations, collected via the LastQuake service of the European Mediterranean Seismological Center, can be utilized to rapidly estimate the probability of a felt earthquake to be “damaging” rather than “harmless” on a global scale. In our fully data-driven, transparent, and reproducible approach, we first map the reported observations to macroseismic intensities according to the EMS-98 macroseismic scale. Subsequently, we compare the distribution of felt-reports to documented earthquake impact in terms of economic losses, number of fatalities, and number of damaged or destroyed buildings. Using the distribution of felt-reports as predictive parameters and an impact measure as the target parameter, we infer a probabilistic model utilizing Bayes’ theorem and Kernel Density Estimation, that provides the probability of an earthquake to be “damaging”. For 22% of felt events in 2021, a sufficient number of felt-reports to run the model is collected within 10 minutes after the earthquake. While a clean separation of “damaging” and “harmless” events remains a challenging task, correct and unambiguous assessment of a large portion of “harmless” events in our dataset is identified as a key strength of our approach. We consider our method an inexpensive addition to the pool of earthquake impact assessment tools, that can be utilized instantly in all populated areas on the planet. Being fully independent of seismic data, the suggested framework poses an affordable option to potentially improve disaster management in regions that lack expensive seismic instrumentation today and in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖的颜演完成签到 ,获得积分10
1秒前
yudandan@CJLU发布了新的文献求助10
2秒前
科研小民工应助_呱_采纳,获得50
2秒前
愉快盼曼完成签到,获得积分20
2秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
3秒前
123完成签到,获得积分10
3秒前
13679165979发布了新的文献求助10
4秒前
温暖的钻石完成签到,获得积分10
4秒前
科研通AI5应助赖道之采纳,获得10
4秒前
5秒前
苏卿应助Eric采纳,获得10
5秒前
思源应助hhzz采纳,获得10
6秒前
红红完成签到,获得积分10
9秒前
瑶一瑶发布了新的文献求助10
9秒前
NexusExplorer应助刘鹏宇采纳,获得10
9秒前
roselau完成签到,获得积分10
9秒前
yudandan@CJLU完成签到,获得积分10
10秒前
10秒前
半山完成签到,获得积分10
14秒前
吹泡泡的红豆完成签到 ,获得积分10
15秒前
研友_89eBO8完成签到 ,获得积分10
15秒前
隐形曼青应助ZeJ采纳,获得10
15秒前
15秒前
隐形曼青应助温暖的钻石采纳,获得10
16秒前
Khr1stINK发布了新的文献求助10
17秒前
123cxj发布了新的文献求助10
18秒前
星辰大海应助红红采纳,获得10
18秒前
sweetbearm应助小周采纳,获得10
19秒前
科研通AI5应助赖道之采纳,获得10
19秒前
20秒前
HonamC完成签到,获得积分10
21秒前
十三十四十五完成签到,获得积分10
22秒前
潇洒的问夏完成签到 ,获得积分10
24秒前
无声瀑布完成签到,获得积分10
24秒前
Bingtao_Lian完成签到 ,获得积分10
25秒前
小布丁完成签到 ,获得积分10
25秒前
竹筏过海应助季生采纳,获得30
26秒前
27秒前
buno应助22采纳,获得10
28秒前
赘婿应助TT采纳,获得10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808