Utilization of crowdsourced macroseismic observations to distinguish damaging from harmless earthquakes globally within minutes of an event

概率逻辑 计算机科学 事件(粒子物理) 贝叶斯概率 贝叶斯定理 人工智能 量子力学 物理
作者
Henning Lilienkamp,Rémy Bossu,Fabrice Cotton,Francesco Finazzi,Matthieu Landès,Graeme Weatherill
标识
DOI:10.5194/egusphere-egu23-14699
摘要

Rapid assessment of an earthquake’s impact on the affected society is a crucial step in the early phase of disaster management, determining the further organization of civil protection measures. In this study, we demonstrate that felt-reports containing macroseismic observations, collected via the LastQuake service of the European Mediterranean Seismological Center, can be utilized to rapidly estimate the probability of a felt earthquake to be “damaging” rather than “harmless” on a global scale. In our fully data-driven, transparent, and reproducible approach, we first map the reported observations to macroseismic intensities according to the EMS-98 macroseismic scale. Subsequently, we compare the distribution of felt-reports to documented earthquake impact in terms of economic losses, number of fatalities, and number of damaged or destroyed buildings. Using the distribution of felt-reports as predictive parameters and an impact measure as the target parameter, we infer a probabilistic model utilizing Bayes’ theorem and Kernel Density Estimation, that provides the probability of an earthquake to be “damaging”. For 22% of felt events in 2021, a sufficient number of felt-reports to run the model is collected within 10 minutes after the earthquake. While a clean separation of “damaging” and “harmless” events remains a challenging task, correct and unambiguous assessment of a large portion of “harmless” events in our dataset is identified as a key strength of our approach. We consider our method an inexpensive addition to the pool of earthquake impact assessment tools, that can be utilized instantly in all populated areas on the planet. Being fully independent of seismic data, the suggested framework poses an affordable option to potentially improve disaster management in regions that lack expensive seismic instrumentation today and in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
响什么捏完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
dududu完成签到,获得积分10
2秒前
2秒前
大椒完成签到 ,获得积分10
3秒前
3秒前
dididi发布了新的文献求助10
3秒前
Sacchride发布了新的文献求助10
4秒前
6秒前
7秒前
大个应助畅快芝麻采纳,获得10
7秒前
大模型应助nena采纳,获得10
7秒前
7秒前
8秒前
浮游应助简单的paper采纳,获得20
8秒前
我喜欢高浩洋完成签到,获得积分10
8秒前
cx完成签到,获得积分10
8秒前
共享精神应助dididi采纳,获得10
9秒前
11关闭了11文献求助
9秒前
9秒前
el完成签到 ,获得积分10
10秒前
11秒前
11秒前
AWESOME Ling发布了新的文献求助10
11秒前
别摆烂了发布了新的文献求助10
11秒前
小情绪应助科研通管家采纳,获得10
13秒前
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Alex应助科研通管家采纳,获得30
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
小情绪应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
生动梦松应助科研通管家采纳,获得150
14秒前
一叶知秋应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355