已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Utilization of crowdsourced macroseismic observations to distinguish damaging from harmless earthquakes globally within minutes of an event

概率逻辑 计算机科学 事件(粒子物理) 贝叶斯概率 贝叶斯定理 人工智能 量子力学 物理
作者
Henning Lilienkamp,Rémy Bossu,Fabrice Cotton,Francesco Finazzi,Matthieu Landès,Graeme Weatherill
标识
DOI:10.5194/egusphere-egu23-14699
摘要

Rapid assessment of an earthquake’s impact on the affected society is a crucial step in the early phase of disaster management, determining the further organization of civil protection measures. In this study, we demonstrate that felt-reports containing macroseismic observations, collected via the LastQuake service of the European Mediterranean Seismological Center, can be utilized to rapidly estimate the probability of a felt earthquake to be “damaging” rather than “harmless” on a global scale. In our fully data-driven, transparent, and reproducible approach, we first map the reported observations to macroseismic intensities according to the EMS-98 macroseismic scale. Subsequently, we compare the distribution of felt-reports to documented earthquake impact in terms of economic losses, number of fatalities, and number of damaged or destroyed buildings. Using the distribution of felt-reports as predictive parameters and an impact measure as the target parameter, we infer a probabilistic model utilizing Bayes’ theorem and Kernel Density Estimation, that provides the probability of an earthquake to be “damaging”. For 22% of felt events in 2021, a sufficient number of felt-reports to run the model is collected within 10 minutes after the earthquake. While a clean separation of “damaging” and “harmless” events remains a challenging task, correct and unambiguous assessment of a large portion of “harmless” events in our dataset is identified as a key strength of our approach. We consider our method an inexpensive addition to the pool of earthquake impact assessment tools, that can be utilized instantly in all populated areas on the planet. Being fully independent of seismic data, the suggested framework poses an affordable option to potentially improve disaster management in regions that lack expensive seismic instrumentation today and in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
屠俊豪发布了新的文献求助10
3秒前
Narcissus完成签到,获得积分10
3秒前
5秒前
三三完成签到 ,获得积分10
7秒前
9秒前
屠俊豪完成签到,获得积分10
9秒前
六沉发布了新的文献求助10
11秒前
Owen应助科研通管家采纳,获得10
18秒前
GingerF应助科研通管家采纳,获得50
18秒前
阿尼完成签到,获得积分10
19秒前
六沉完成签到 ,获得积分10
20秒前
22秒前
25秒前
minnie完成签到 ,获得积分10
26秒前
akun完成签到,获得积分10
26秒前
wenlong完成签到 ,获得积分10
26秒前
dota1dota26完成签到,获得积分10
27秒前
魔幻若血完成签到,获得积分10
30秒前
刻苦黎云完成签到,获得积分10
31秒前
shayla完成签到,获得积分10
32秒前
顺利白竹完成签到 ,获得积分10
36秒前
古今奇观完成签到 ,获得积分10
43秒前
文玉梅发布了新的文献求助50
44秒前
shayla发布了新的文献求助10
47秒前
57秒前
pipichang发布了新的文献求助10
1分钟前
卧镁铀钳完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Annabelle完成签到,获得积分10
1分钟前
1分钟前
whisper发布了新的文献求助10
1分钟前
文子完成签到 ,获得积分10
1分钟前
H_不甜也是糖完成签到 ,获得积分10
1分钟前
感动笑完成签到,获得积分10
1分钟前
1分钟前
早茶可口完成签到,获得积分10
1分钟前
whisper完成签到,获得积分10
1分钟前
沧笙踏歌应助感动笑采纳,获得10
1分钟前
脑洞疼应助霸气的金鱼采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965509
求助须知:如何正确求助?哪些是违规求助? 3510811
关于积分的说明 11155154
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804176