Utilization of crowdsourced macroseismic observations to distinguish damaging from harmless earthquakes globally within minutes of an event

概率逻辑 计算机科学 事件(粒子物理) 贝叶斯概率 贝叶斯定理 人工智能 量子力学 物理
作者
Henning Lilienkamp,Rémy Bossu,Fabrice Cotton,Francesco Finazzi,Matthieu Landès,Graeme Weatherill
标识
DOI:10.5194/egusphere-egu23-14699
摘要

Rapid assessment of an earthquake’s impact on the affected society is a crucial step in the early phase of disaster management, determining the further organization of civil protection measures. In this study, we demonstrate that felt-reports containing macroseismic observations, collected via the LastQuake service of the European Mediterranean Seismological Center, can be utilized to rapidly estimate the probability of a felt earthquake to be “damaging” rather than “harmless” on a global scale. In our fully data-driven, transparent, and reproducible approach, we first map the reported observations to macroseismic intensities according to the EMS-98 macroseismic scale. Subsequently, we compare the distribution of felt-reports to documented earthquake impact in terms of economic losses, number of fatalities, and number of damaged or destroyed buildings. Using the distribution of felt-reports as predictive parameters and an impact measure as the target parameter, we infer a probabilistic model utilizing Bayes’ theorem and Kernel Density Estimation, that provides the probability of an earthquake to be “damaging”. For 22% of felt events in 2021, a sufficient number of felt-reports to run the model is collected within 10 minutes after the earthquake. While a clean separation of “damaging” and “harmless” events remains a challenging task, correct and unambiguous assessment of a large portion of “harmless” events in our dataset is identified as a key strength of our approach. We consider our method an inexpensive addition to the pool of earthquake impact assessment tools, that can be utilized instantly in all populated areas on the planet. Being fully independent of seismic data, the suggested framework poses an affordable option to potentially improve disaster management in regions that lack expensive seismic instrumentation today and in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半农应助梨花月采纳,获得10
刚刚
温柔的代曼完成签到,获得积分10
刚刚
雨点发布了新的文献求助10
刚刚
Hilda007应助刚睡醒采纳,获得10
1秒前
自觉梦菲完成签到,获得积分10
2秒前
AI完成签到,获得积分10
2秒前
务实的胡萝卜完成签到,获得积分10
2秒前
2秒前
吕万鹏发布了新的文献求助10
2秒前
LvYaJie完成签到,获得积分20
3秒前
22nd发布了新的文献求助10
3秒前
苏silence发布了新的文献求助10
4秒前
搜集达人应助沙青亦采纳,获得10
4秒前
iron完成签到,获得积分10
4秒前
儒雅的豁完成签到,获得积分10
4秒前
小二郎应助寂灭之时采纳,获得10
4秒前
所所应助发发发采纳,获得30
4秒前
4秒前
量子星尘发布了新的文献求助20
5秒前
重楼远志发布了新的文献求助100
5秒前
5秒前
5秒前
辛勤月饼完成签到,获得积分10
6秒前
6秒前
zzz关注了科研通微信公众号
6秒前
7秒前
我是老大应助Chichi采纳,获得10
7秒前
肖坤发布了新的文献求助10
7秒前
情怀应助称心寒松采纳,获得10
8秒前
杨杨完成签到 ,获得积分10
8秒前
8秒前
思源应助张垚采纳,获得10
8秒前
炸鱼饼发布了新的文献求助10
8秒前
啦啦啦发布了新的文献求助10
8秒前
9秒前
9秒前
Wang完成签到,获得积分10
9秒前
鹂鹂复霖霖完成签到,获得积分10
9秒前
安菲尔德完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006