Utilization of crowdsourced macroseismic observations to distinguish damaging from harmless earthquakes globally within minutes of an event

概率逻辑 计算机科学 事件(粒子物理) 贝叶斯概率 贝叶斯定理 人工智能 量子力学 物理
作者
Henning Lilienkamp,Rémy Bossu,Fabrice Cotton,Francesco Finazzi,Matthieu Landès,Graeme Weatherill
标识
DOI:10.5194/egusphere-egu23-14699
摘要

Rapid assessment of an earthquake’s impact on the affected society is a crucial step in the early phase of disaster management, determining the further organization of civil protection measures. In this study, we demonstrate that felt-reports containing macroseismic observations, collected via the LastQuake service of the European Mediterranean Seismological Center, can be utilized to rapidly estimate the probability of a felt earthquake to be “damaging” rather than “harmless” on a global scale. In our fully data-driven, transparent, and reproducible approach, we first map the reported observations to macroseismic intensities according to the EMS-98 macroseismic scale. Subsequently, we compare the distribution of felt-reports to documented earthquake impact in terms of economic losses, number of fatalities, and number of damaged or destroyed buildings. Using the distribution of felt-reports as predictive parameters and an impact measure as the target parameter, we infer a probabilistic model utilizing Bayes’ theorem and Kernel Density Estimation, that provides the probability of an earthquake to be “damaging”. For 22% of felt events in 2021, a sufficient number of felt-reports to run the model is collected within 10 minutes after the earthquake. While a clean separation of “damaging” and “harmless” events remains a challenging task, correct and unambiguous assessment of a large portion of “harmless” events in our dataset is identified as a key strength of our approach. We consider our method an inexpensive addition to the pool of earthquake impact assessment tools, that can be utilized instantly in all populated areas on the planet. Being fully independent of seismic data, the suggested framework poses an affordable option to potentially improve disaster management in regions that lack expensive seismic instrumentation today and in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我鬼混回来了完成签到 ,获得积分10
刚刚
monned完成签到 ,获得积分10
3秒前
陈__完成签到,获得积分10
4秒前
6秒前
6秒前
6秒前
fang完成签到,获得积分10
7秒前
Jasper应助欣喜落雁采纳,获得10
7秒前
路人甲路人乙完成签到 ,获得积分20
7秒前
8秒前
程大海完成签到,获得积分10
9秒前
默默懿轩完成签到,获得积分10
10秒前
顽主完成签到,获得积分10
12秒前
明亮的绫发布了新的文献求助10
12秒前
默默懿轩发布了新的文献求助10
12秒前
zorro3574完成签到,获得积分10
15秒前
leileilei完成签到,获得积分20
15秒前
zhang完成签到 ,获得积分10
16秒前
有云关注了科研通微信公众号
17秒前
sunshine发布了新的文献求助10
18秒前
22秒前
稳重书双完成签到 ,获得积分10
22秒前
23秒前
磊2024完成签到,获得积分10
24秒前
超级如风完成签到 ,获得积分10
24秒前
敏敏完成签到,获得积分10
26秒前
27秒前
sunshine完成签到,获得积分10
27秒前
怡然新梅发布了新的文献求助10
28秒前
kannar完成签到,获得积分10
28秒前
gxqqqqqqq发布了新的文献求助10
29秒前
小马甲应助清秀的秋荷采纳,获得10
30秒前
欣喜落雁发布了新的文献求助10
31秒前
wyx完成签到,获得积分10
31秒前
ss完成签到,获得积分10
31秒前
Hellowa完成签到,获得积分10
34秒前
在水一方应助nano采纳,获得10
34秒前
南兮完成签到,获得积分10
35秒前
楠茸完成签到 ,获得积分10
36秒前
拼搏绿柏完成签到,获得积分10
37秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165024
求助须知:如何正确求助?哪些是违规求助? 2816112
关于积分的说明 7911373
捐赠科研通 2475753
什么是DOI,文献DOI怎么找? 1318362
科研通“疑难数据库(出版商)”最低求助积分说明 632098
版权声明 602370