分割
计算机科学
人工智能
德鲁森
黄斑变性
光学相干层析成像
卷积神经网络
模式识别(心理学)
深度学习
计算机视觉
图像分割
医学
眼科
作者
Shengyong Diao,Jinzhu Su,Changqing Yang,Weifang Zhu,Dehui Xiang,Xinjian Chen,Qing Peng,Fei Shi
标识
DOI:10.1016/j.bspc.2023.104810
摘要
Age-related macular degeneration (AMD) is one of the main causes of visual impairment in elderly people, with drusen and choroidal neovascularization (CNV) being two characterizing types of lesions. Based on optical coherence tomography (OCT), image classification can be used in AMD diagnosis, while image segmentation is necessary for quantitative assessment of the lesion area. In this paper, we propose a deep learning framework exploiting dual guidance between the two tasks. Firstly, a complementary mask guided convolutional neural network (CM-CNN) is proposed to perform classification of OCT B-scans with drusen or CNV from normal ones, where the guiding mask is generated by the auxiliary segmentation task. Secondly, a class activation map guided UNet (CAM-UNet) is proposed to achieve segmentation of drusen and CNV lesions, using CAM output from the CM-CNN. Tested on a subset of the public UCSD dataset, and compared with five classification networks, four segmentation networks, and three multi-task networks, the proposed dual guidance network has achieved higher accuracy both in classification and segmentation. The classification accuracy reaches 96.93% and the Dice coefficient for segmentation reaches 77.51%. Results on an extra dataset for detection of macular edema and segmentation of retinal fluids further show the generalizability of the proposed model.
科研通智能强力驱动
Strongly Powered by AbleSci AI