Research and Application of an Intelligent Prediction of Rock Bursts Based on a Bayes-Optimized Convolutional Neural Network

人工神经网络 朴素贝叶斯分类器 数据挖掘 人工智能 贝叶斯定理 计算机科学 机器学习 支持向量机 工程类 贝叶斯概率
作者
Mingliang Li,Kegang Li,Qingci Qin,Rui Yue,Ji Quan Shi
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:23 (5) 被引量:14
标识
DOI:10.1061/ijgnai.gmeng-8213
摘要

Intelligent prediction of rock bursts has great significance in rock mechanics research and a high value in engineering applications. An intelligent rockburst prediction method based on a Bayes-optimized convolutional neural network (BOCNN) was proposed. First, an exploratory analysis of data was conducted using joint distribution diagrams and the heat map of the correlation matrix to establish a high-quality data set of rockburst engineering cases and a parameter system for rockburst prediction. Second, six rockburst prediction models were built by combining machine learning algorithms, such as random forest, k-nearest neighbor (KNN), and Bayes, deep learning (CNN1d and CNN2d), and BOCNN. In addition, we used accuracy, precision, recall, F1 score, receiver operating characteristic curve, Taylor diagram, and the probability indicator of prediction results as indicators to evaluate the accuracy of the models. A comparative analysis of the six rockburst prediction models was conducted to explore rockburst prediction models with good robustness, generalization performance, and high accuracy. Moreover, 11 comparative models were established for comparative analysis. Then, we used the MATLAB tool to build an intelligent rockburst prediction system and applied the findings to the Jiangbian Hydropower Station in Sichuan Province, China. The results of the study show that the intelligent rockburst prediction system can provide technical support for predicting rockburst hazards in mining, transportation, and water conservancy and hydropower projects and a scientific basis for later construction and the design of support structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
Hester完成签到,获得积分10
4秒前
5秒前
Qinghua完成签到,获得积分10
5秒前
蛋黄啵啵发布了新的文献求助10
6秒前
研友_ngqb28完成签到,获得积分10
7秒前
Zetlynn发布了新的文献求助10
7秒前
jimmylafs发布了新的文献求助10
8秒前
ADA发布了新的文献求助10
8秒前
fanzi发布了新的文献求助10
9秒前
9秒前
10秒前
共享精神应助安寒采纳,获得10
10秒前
10秒前
坚定的啤酒完成签到,获得积分10
11秒前
爆米花应助mayuzumi采纳,获得10
12秒前
12秒前
个性的友蕊完成签到,获得积分10
12秒前
可爱的函函应助cicy采纳,获得10
13秒前
14秒前
苗儿发布了新的文献求助10
16秒前
大力发布了新的文献求助10
17秒前
烟花应助蛋黄啵啵采纳,获得10
17秒前
cicy完成签到,获得积分10
18秒前
18秒前
19秒前
Hello应助个性的友蕊采纳,获得10
19秒前
19秒前
慕青应助帅到被人砍采纳,获得10
20秒前
wqm发布了新的文献求助10
20秒前
没烦恼发布了新的文献求助10
20秒前
22秒前
Proustian完成签到,获得积分10
22秒前
歇儿哒哒完成签到,获得积分10
22秒前
23秒前
独特一刀发布了新的文献求助10
23秒前
icewuwu完成签到,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461433
求助须知:如何正确求助?哪些是违规求助? 3055090
关于积分的说明 9046471
捐赠科研通 2745000
什么是DOI,文献DOI怎么找? 1505827
科研通“疑难数据库(出版商)”最低求助积分说明 695897
邀请新用户注册赠送积分活动 695293