已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Unreported Micronutrients From Food Labels: Machine Learning Approach

微量营养素 烟酸 核黄素 维生素 营养事实标签 计算机科学 机器学习 食品科学 环境卫生 医学 生物 生物化学 病理
作者
Rouzbeh Razavi,Guisen Xue
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e45332-e45332 被引量:4
标识
DOI:10.2196/45332
摘要

Micronutrient deficiencies represent a major global health issue, with over 2 billion individuals experiencing deficiencies in essential vitamins and minerals. Food labels provide consumers with information regarding the nutritional content of food items and have been identified as a potential tool for improving diets. However, due to governmental regulations and the physical limitations of the labels, food labels often lack comprehensive information about the vitamins and minerals present in foods. As a result, information about most of the micronutrients is absent from existing food labels.This paper aims to examine the possibility of using machine learning algorithms to predict unreported micronutrients such as vitamin A (retinol), vitamin C, vitamin B1 (thiamin), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B6, vitamin B12, vitamin E (alpha-tocopherol), vitamin K, and minerals such as magnesium, zinc, phosphorus, selenium, manganese, and copper from nutrition information provided on existing food labels. If unreported micronutrients can be predicted with acceptable accuracies from existing food labels using machine learning predictive models, such models can be integrated into mobile apps to provide consumers with additional micronutrient information about foods and help them make more informed diet decisions.Data from the Food and Nutrient Database for Dietary Studies (FNDDS) data set, representing a total of 5624 foods, were used to train a diverse set of machine learning classification and regression algorithms to predict unreported vitamins and minerals from existing food label data. For each model, hyperparameters were adjusted, and the models were evaluated using repeated cross-validation to ensure that the reported results were not subject to overfitting.According to the results, while predicting the exact quantity of vitamins and minerals is shown to be challenging, with regression R2 varying in a wide range from 0.28 (for magnesium) to 0.92 (for manganese), the classification models can accurately predict the category ("low," "medium," or "high") level of all minerals and vitamins with accuracies exceeding 0.80. The highest classification accuracies for specific micronutrients are achieved for vitamin B12 (0.94) and phosphorus (0.94), while the lowest are for vitamin E (0.81) and selenium (0.83).This study demonstrates the feasibility of predicting unreported micronutrients from existing food labels using machine learning algorithms. The results show that the approach has the potential to significantly improve consumer knowledge about the micronutrient content of the foods they consume. Integrating these predictive models into mobile apps can enhance their accessibility and engagement with consumers. The implications of this research for public health are noteworthy, underscoring the potential of technology to augment consumers' understanding of the micronutrient content of their diets while also facilitating the tracking of food intake and providing personalized recommendations based on the micronutrient content and individual preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱朱朱完成签到,获得积分10
刚刚
yuan发布了新的文献求助10
2秒前
光之战士完成签到 ,获得积分10
3秒前
mw发布了新的文献求助10
5秒前
111完成签到 ,获得积分10
8秒前
15秒前
15秒前
18秒前
Amy完成签到 ,获得积分10
18秒前
Jing完成签到 ,获得积分20
21秒前
Ava应助HuiHui采纳,获得10
21秒前
称心的思卉完成签到,获得积分10
23秒前
wanci应助tangyuanliang采纳,获得10
24秒前
25秒前
HBY完成签到,获得积分10
27秒前
Steven发布了新的文献求助10
30秒前
31秒前
凯文完成签到 ,获得积分10
34秒前
34秒前
凶狠的白竹完成签到,获得积分10
35秒前
瘦瘦的迎南完成签到 ,获得积分10
35秒前
36秒前
SUE发布了新的文献求助10
36秒前
fanyueyue应助niuma采纳,获得20
37秒前
38秒前
39秒前
41秒前
tangyuanliang发布了新的文献求助10
41秒前
hhllhh发布了新的文献求助10
44秒前
负责怀莲发布了新的文献求助10
45秒前
慕容半邪完成签到,获得积分10
46秒前
冰兰完成签到,获得积分10
47秒前
47秒前
Jing关注了科研通微信公众号
50秒前
乐糖完成签到 ,获得积分10
52秒前
斐嘿嘿发布了新的文献求助10
52秒前
小桐完成签到,获得积分10
53秒前
陌上花开完成签到,获得积分0
54秒前
yuan完成签到,获得积分10
57秒前
Arui发布了新的文献求助10
58秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989868
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255752
捐赠科研通 3270793
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882215
科研通“疑难数据库(出版商)”最低求助积分说明 809208