Predicting Unreported Micronutrients From Food Labels: Machine Learning Approach

微量营养素 烟酸 核黄素 维生素 营养事实标签 计算机科学 机器学习 食品科学 环境卫生 医学 生物 生物化学 病理
作者
Rouzbeh Razavi,Guisen Xue
出处
期刊:Journal of Medical Internet Research 卷期号:25: e45332-e45332 被引量:4
标识
DOI:10.2196/45332
摘要

Micronutrient deficiencies represent a major global health issue, with over 2 billion individuals experiencing deficiencies in essential vitamins and minerals. Food labels provide consumers with information regarding the nutritional content of food items and have been identified as a potential tool for improving diets. However, due to governmental regulations and the physical limitations of the labels, food labels often lack comprehensive information about the vitamins and minerals present in foods. As a result, information about most of the micronutrients is absent from existing food labels.This paper aims to examine the possibility of using machine learning algorithms to predict unreported micronutrients such as vitamin A (retinol), vitamin C, vitamin B1 (thiamin), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B6, vitamin B12, vitamin E (alpha-tocopherol), vitamin K, and minerals such as magnesium, zinc, phosphorus, selenium, manganese, and copper from nutrition information provided on existing food labels. If unreported micronutrients can be predicted with acceptable accuracies from existing food labels using machine learning predictive models, such models can be integrated into mobile apps to provide consumers with additional micronutrient information about foods and help them make more informed diet decisions.Data from the Food and Nutrient Database for Dietary Studies (FNDDS) data set, representing a total of 5624 foods, were used to train a diverse set of machine learning classification and regression algorithms to predict unreported vitamins and minerals from existing food label data. For each model, hyperparameters were adjusted, and the models were evaluated using repeated cross-validation to ensure that the reported results were not subject to overfitting.According to the results, while predicting the exact quantity of vitamins and minerals is shown to be challenging, with regression R2 varying in a wide range from 0.28 (for magnesium) to 0.92 (for manganese), the classification models can accurately predict the category ("low," "medium," or "high") level of all minerals and vitamins with accuracies exceeding 0.80. The highest classification accuracies for specific micronutrients are achieved for vitamin B12 (0.94) and phosphorus (0.94), while the lowest are for vitamin E (0.81) and selenium (0.83).This study demonstrates the feasibility of predicting unreported micronutrients from existing food labels using machine learning algorithms. The results show that the approach has the potential to significantly improve consumer knowledge about the micronutrient content of the foods they consume. Integrating these predictive models into mobile apps can enhance their accessibility and engagement with consumers. The implications of this research for public health are noteworthy, underscoring the potential of technology to augment consumers' understanding of the micronutrient content of their diets while also facilitating the tracking of food intake and providing personalized recommendations based on the micronutrient content and individual preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄妙完成签到,获得积分20
刚刚
飘逸宫苴完成签到,获得积分10
1秒前
Eric发布了新的文献求助10
2秒前
2秒前
2秒前
Diamond完成签到,获得积分10
4秒前
4秒前
万能图书馆应助清脆大树采纳,获得10
5秒前
5秒前
kingripple发布了新的文献求助10
6秒前
Nniu完成签到 ,获得积分10
6秒前
8秒前
丁无声关注了科研通微信公众号
8秒前
8秒前
wyp发布了新的文献求助10
9秒前
Hzk_完成签到,获得积分10
9秒前
开心的大娘完成签到,获得积分10
10秒前
SCI的芷蝶发布了新的文献求助10
11秒前
23xyke发布了新的文献求助10
11秒前
典雅的绿凝完成签到 ,获得积分10
11秒前
劲秉应助玄妙采纳,获得30
12秒前
12秒前
13秒前
Eric完成签到,获得积分10
13秒前
13秒前
kma完成签到,获得积分10
13秒前
熙米鹿完成签到 ,获得积分10
14秒前
14秒前
劲秉应助annoraz采纳,获得10
14秒前
丘比特应助还原糖采纳,获得10
14秒前
16秒前
手工猫完成签到,获得积分10
16秒前
17秒前
zky17715002完成签到,获得积分10
17秒前
xjcy应助harrintong采纳,获得10
17秒前
17秒前
壮壮完成签到 ,获得积分10
17秒前
清脆大树发布了新的文献求助10
18秒前
正直冰露完成签到,获得积分10
19秒前
xiaonan_ke完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291731
求助须知:如何正确求助?哪些是违规求助? 2928242
关于积分的说明 8436110
捐赠科研通 2600160
什么是DOI,文献DOI怎么找? 1418904
科研通“疑难数据库(出版商)”最低求助积分说明 660173
邀请新用户注册赠送积分活动 642825