亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Unreported Micronutrients From Food Labels: Machine Learning Approach

微量营养素 烟酸 核黄素 维生素 营养事实标签 计算机科学 机器学习 食品科学 环境卫生 医学 生物 生物化学 病理
作者
Rouzbeh Razavi,Guisen Xue
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e45332-e45332 被引量:4
标识
DOI:10.2196/45332
摘要

Micronutrient deficiencies represent a major global health issue, with over 2 billion individuals experiencing deficiencies in essential vitamins and minerals. Food labels provide consumers with information regarding the nutritional content of food items and have been identified as a potential tool for improving diets. However, due to governmental regulations and the physical limitations of the labels, food labels often lack comprehensive information about the vitamins and minerals present in foods. As a result, information about most of the micronutrients is absent from existing food labels.This paper aims to examine the possibility of using machine learning algorithms to predict unreported micronutrients such as vitamin A (retinol), vitamin C, vitamin B1 (thiamin), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B6, vitamin B12, vitamin E (alpha-tocopherol), vitamin K, and minerals such as magnesium, zinc, phosphorus, selenium, manganese, and copper from nutrition information provided on existing food labels. If unreported micronutrients can be predicted with acceptable accuracies from existing food labels using machine learning predictive models, such models can be integrated into mobile apps to provide consumers with additional micronutrient information about foods and help them make more informed diet decisions.Data from the Food and Nutrient Database for Dietary Studies (FNDDS) data set, representing a total of 5624 foods, were used to train a diverse set of machine learning classification and regression algorithms to predict unreported vitamins and minerals from existing food label data. For each model, hyperparameters were adjusted, and the models were evaluated using repeated cross-validation to ensure that the reported results were not subject to overfitting.According to the results, while predicting the exact quantity of vitamins and minerals is shown to be challenging, with regression R2 varying in a wide range from 0.28 (for magnesium) to 0.92 (for manganese), the classification models can accurately predict the category ("low," "medium," or "high") level of all minerals and vitamins with accuracies exceeding 0.80. The highest classification accuracies for specific micronutrients are achieved for vitamin B12 (0.94) and phosphorus (0.94), while the lowest are for vitamin E (0.81) and selenium (0.83).This study demonstrates the feasibility of predicting unreported micronutrients from existing food labels using machine learning algorithms. The results show that the approach has the potential to significantly improve consumer knowledge about the micronutrient content of the foods they consume. Integrating these predictive models into mobile apps can enhance their accessibility and engagement with consumers. The implications of this research for public health are noteworthy, underscoring the potential of technology to augment consumers' understanding of the micronutrient content of their diets while also facilitating the tracking of food intake and providing personalized recommendations based on the micronutrient content and individual preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
14秒前
林宥嘉完成签到 ,获得积分10
18秒前
老夫子完成签到,获得积分10
20秒前
kenti2023完成签到 ,获得积分10
25秒前
41秒前
YYYCCCCC发布了新的文献求助10
50秒前
50秒前
11发布了新的文献求助10
55秒前
CipherSage应助miles采纳,获得10
58秒前
周游完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
huihongzeng发布了新的文献求助10
1分钟前
Judy完成签到 ,获得积分10
1分钟前
利物鸟贝拉完成签到,获得积分10
1分钟前
1分钟前
Esperanza完成签到,获得积分10
1分钟前
miles发布了新的文献求助10
1分钟前
1分钟前
鹿茸与共发布了新的文献求助10
1分钟前
1分钟前
jianghs完成签到,获得积分10
1分钟前
科目三应助11采纳,获得10
1分钟前
jianghs发布了新的文献求助10
1分钟前
1分钟前
feifei完成签到,获得积分10
1分钟前
feifei发布了新的文献求助10
1分钟前
福娃哇完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
草莓熊1215完成签到 ,获得积分10
2分钟前
青竹完成签到,获得积分10
2分钟前
旺仔先生完成签到 ,获得积分10
2分钟前
2分钟前
candy teen完成签到,获得积分10
2分钟前
垃圾桶完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990015
求助须知:如何正确求助?哪些是违规求助? 3532077
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805139
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228