Predicting Unreported Micronutrients From Food Labels: Machine Learning Approach

微量营养素 烟酸 核黄素 维生素 营养事实标签 计算机科学 机器学习 食品科学 环境卫生 医学 生物 生物化学 病理
作者
Rouzbeh Razavi,Guisen Xue
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e45332-e45332 被引量:4
标识
DOI:10.2196/45332
摘要

Micronutrient deficiencies represent a major global health issue, with over 2 billion individuals experiencing deficiencies in essential vitamins and minerals. Food labels provide consumers with information regarding the nutritional content of food items and have been identified as a potential tool for improving diets. However, due to governmental regulations and the physical limitations of the labels, food labels often lack comprehensive information about the vitamins and minerals present in foods. As a result, information about most of the micronutrients is absent from existing food labels.This paper aims to examine the possibility of using machine learning algorithms to predict unreported micronutrients such as vitamin A (retinol), vitamin C, vitamin B1 (thiamin), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B6, vitamin B12, vitamin E (alpha-tocopherol), vitamin K, and minerals such as magnesium, zinc, phosphorus, selenium, manganese, and copper from nutrition information provided on existing food labels. If unreported micronutrients can be predicted with acceptable accuracies from existing food labels using machine learning predictive models, such models can be integrated into mobile apps to provide consumers with additional micronutrient information about foods and help them make more informed diet decisions.Data from the Food and Nutrient Database for Dietary Studies (FNDDS) data set, representing a total of 5624 foods, were used to train a diverse set of machine learning classification and regression algorithms to predict unreported vitamins and minerals from existing food label data. For each model, hyperparameters were adjusted, and the models were evaluated using repeated cross-validation to ensure that the reported results were not subject to overfitting.According to the results, while predicting the exact quantity of vitamins and minerals is shown to be challenging, with regression R2 varying in a wide range from 0.28 (for magnesium) to 0.92 (for manganese), the classification models can accurately predict the category ("low," "medium," or "high") level of all minerals and vitamins with accuracies exceeding 0.80. The highest classification accuracies for specific micronutrients are achieved for vitamin B12 (0.94) and phosphorus (0.94), while the lowest are for vitamin E (0.81) and selenium (0.83).This study demonstrates the feasibility of predicting unreported micronutrients from existing food labels using machine learning algorithms. The results show that the approach has the potential to significantly improve consumer knowledge about the micronutrient content of the foods they consume. Integrating these predictive models into mobile apps can enhance their accessibility and engagement with consumers. The implications of this research for public health are noteworthy, underscoring the potential of technology to augment consumers' understanding of the micronutrient content of their diets while also facilitating the tracking of food intake and providing personalized recommendations based on the micronutrient content and individual preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123321完成签到 ,获得积分10
1秒前
卓若之完成签到 ,获得积分10
2秒前
苯二氮卓完成签到,获得积分10
3秒前
温暖完成签到 ,获得积分10
5秒前
mojomars完成签到,获得积分10
5秒前
时尚雨兰完成签到,获得积分0
6秒前
一叶知秋完成签到,获得积分10
8秒前
叶123完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
Minicoper发布了新的文献求助10
10秒前
背书强完成签到 ,获得积分10
11秒前
淡然以柳完成签到 ,获得积分10
13秒前
dolabmu完成签到 ,获得积分10
16秒前
崔崔完成签到 ,获得积分10
20秒前
SYLH应助xcxc采纳,获得10
21秒前
wp4455777完成签到,获得积分10
22秒前
十一完成签到,获得积分10
22秒前
ru完成签到 ,获得积分10
24秒前
慧木完成签到 ,获得积分10
24秒前
WW完成签到 ,获得积分10
25秒前
小高同学完成签到,获得积分10
26秒前
轻轻1完成签到,获得积分10
29秒前
30秒前
大橙子发布了新的文献求助10
34秒前
iuhgnor完成签到,获得积分10
37秒前
可夫司机完成签到 ,获得积分10
40秒前
yang完成签到,获得积分10
42秒前
一1完成签到 ,获得积分10
44秒前
jiaolulu完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
46秒前
爆米花应助LiZhao采纳,获得10
46秒前
轻轻完成签到,获得积分10
49秒前
Orange应助jiaolulu采纳,获得10
49秒前
xcxc完成签到,获得积分10
51秒前
water应助科研通管家采纳,获得50
51秒前
51秒前
默存完成签到,获得积分10
54秒前
风中的金鱼完成签到 ,获得积分10
56秒前
橙汁完成签到,获得积分10
57秒前
普鲁卡因发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022