Predicting Unreported Micronutrients From Food Labels: Machine Learning Approach

微量营养素 烟酸 核黄素 维生素 营养事实标签 计算机科学 机器学习 食品科学 环境卫生 医学 生物 生物化学 病理
作者
Rouzbeh Razavi,Guisen Xue
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e45332-e45332 被引量:4
标识
DOI:10.2196/45332
摘要

Micronutrient deficiencies represent a major global health issue, with over 2 billion individuals experiencing deficiencies in essential vitamins and minerals. Food labels provide consumers with information regarding the nutritional content of food items and have been identified as a potential tool for improving diets. However, due to governmental regulations and the physical limitations of the labels, food labels often lack comprehensive information about the vitamins and minerals present in foods. As a result, information about most of the micronutrients is absent from existing food labels.This paper aims to examine the possibility of using machine learning algorithms to predict unreported micronutrients such as vitamin A (retinol), vitamin C, vitamin B1 (thiamin), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B6, vitamin B12, vitamin E (alpha-tocopherol), vitamin K, and minerals such as magnesium, zinc, phosphorus, selenium, manganese, and copper from nutrition information provided on existing food labels. If unreported micronutrients can be predicted with acceptable accuracies from existing food labels using machine learning predictive models, such models can be integrated into mobile apps to provide consumers with additional micronutrient information about foods and help them make more informed diet decisions.Data from the Food and Nutrient Database for Dietary Studies (FNDDS) data set, representing a total of 5624 foods, were used to train a diverse set of machine learning classification and regression algorithms to predict unreported vitamins and minerals from existing food label data. For each model, hyperparameters were adjusted, and the models were evaluated using repeated cross-validation to ensure that the reported results were not subject to overfitting.According to the results, while predicting the exact quantity of vitamins and minerals is shown to be challenging, with regression R2 varying in a wide range from 0.28 (for magnesium) to 0.92 (for manganese), the classification models can accurately predict the category ("low," "medium," or "high") level of all minerals and vitamins with accuracies exceeding 0.80. The highest classification accuracies for specific micronutrients are achieved for vitamin B12 (0.94) and phosphorus (0.94), while the lowest are for vitamin E (0.81) and selenium (0.83).This study demonstrates the feasibility of predicting unreported micronutrients from existing food labels using machine learning algorithms. The results show that the approach has the potential to significantly improve consumer knowledge about the micronutrient content of the foods they consume. Integrating these predictive models into mobile apps can enhance their accessibility and engagement with consumers. The implications of this research for public health are noteworthy, underscoring the potential of technology to augment consumers' understanding of the micronutrient content of their diets while also facilitating the tracking of food intake and providing personalized recommendations based on the micronutrient content and individual preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
南风知我意完成签到,获得积分20
2秒前
段一帆发布了新的文献求助30
4秒前
wangqinlei完成签到 ,获得积分10
4秒前
fenghp发布了新的文献求助10
5秒前
王馨雨发布了新的文献求助10
5秒前
7秒前
CipherSage应助ccalvintan采纳,获得10
8秒前
8秒前
雪天的阳完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
烟花应助ren采纳,获得10
13秒前
讨厌科研发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
苏卿应助科研通管家采纳,获得30
15秒前
fd163c应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
16秒前
CAOHOU应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得30
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
16秒前
殷勤的紫槐完成签到,获得积分10
16秒前
风轻青柠发布了新的文献求助10
17秒前
17秒前
机智冬灵完成签到,获得积分10
18秒前
19秒前
为小嗳打伞完成签到 ,获得积分10
21秒前
小木安华发布了新的文献求助10
21秒前
体贴的之卉完成签到,获得积分20
23秒前
大侠完成签到 ,获得积分10
23秒前
spy777应助机智冬灵采纳,获得20
24秒前
晨曦发布了新的文献求助10
24秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174